Patents by Inventor Yasushi Matsushita

Yasushi Matsushita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9613749
    Abstract: A manufacturing device for a field pole magnet body includes a reference jig having reference surfaces in the lengthwise direction, width direction, and thickness direction for positioning a plurality of cleaved and divided magnet fragments in an aligned state. The manufacturing device further includes a first pressing means that presses the plurality of magnet fragments to the thickness direction reference surface from the thickness direction of a magnet body to align them in the thickness direction, and a second pressing means that presses the plurality of magnet fragments to the width direction reference surface from the width direction of the magnet body to align them in the width direction. An operational axis line of a pressing part of at least one of the first and second pressing means is arranged to be tilted such that it approaches the lengthwise direction reference surface at the side that abuts the magnet fragments.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: April 4, 2017
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Yasushi Matsushita, Hideki Watanabe, Takashi Sekikawa, Kimio Nishimura, Kazuhiro Takaichi, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro
  • Publication number: 20160243719
    Abstract: A manufacture method that includes positioning the permanent magnet body of which a surface is coated with a coating film for deterioration prevention, a scheduled cleavage portion of the permanent magnet body being located between two fulcrums, which are edge portions of a die, supporting the permanent magnet body, and cleaving the permanent magnet body into a cleaved magnet body and the magnet piece by pressing the scheduled cleavage portion of the permanent magnet body is provided. The manufacture method also includes cutting the coating-film between the cleaved magnet body and the magnet piece by pressing an end portion of the cleaved magnet piece from a pressing side of the scheduled cleavage portion, the end portion being on a side opposite to a cleavage surface side.
    Type: Application
    Filed: July 29, 2014
    Publication date: August 25, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Takumi OHSHIMA, Kiyoshi HASEGAWA, Kimio NISHIMURA, Takashi SEKIKAWA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI
  • Publication number: 20160211073
    Abstract: A cutting method and a cutting device of cutting a magnet body including a coating film feed, in a state where the magnet body in which cutout grooves serving as brittle sections are provided on a lower surface along cutting planned positions is supported by dies serving as two support points from the lower side, the magnet body to a position where the brittle section is arranged between both the support points, and press the magnet body from the upper side of a position offset rearward in the feeding direction from the brittle section between both the support points, so as to cut the magnet body into a cut magnet body and a magnet piece smaller than the cut magnet body while cutting the coating film.
    Type: Application
    Filed: August 21, 2014
    Publication date: July 21, 2016
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Takumi OHSHIMA, Kiyoshi HASEGAWA, Kimio NISHIMURA, Takashi SEKIKAWA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI
  • Publication number: 20160136835
    Abstract: The magnet cutting device includes a pair of supporting portions spaced apart by a predetermined distance and configured to support the magnet from a bottom side, a blade configured to press the magnet supported by the pair of supporting portions from an upper side of the magnet, and a magnet supporting tool arranged between the pair of supporting portions to support the magnet from the bottom side of the magnet. A surface of the magnet supporting tool to be held in contact with the magnet is shaped such that a central part of an upper end is higher than the upper ends of the pair of supporting portions and an end part of the upper end is lower than the upper ends of the pair of supporting portions when the magnet is placed on the surface, the upper end having a slope connecting the central part and the end part.
    Type: Application
    Filed: April 25, 2014
    Publication date: May 19, 2016
    Inventors: Takumi OHSHIMA, Kiyoshi HASEGAWA, Kimio NISHIMURA, Takashi SEKIKAWA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI
  • Patent number: 9330840
    Abstract: An apparatus for manufacturing a field pole magnetic body formed by laminating magnet segments produced by cutting and dividing a permanent magnet and to be arranged in a rotary electric machine includes a housing part adapted to successively house a plurality of the magnet segments having adhesive applied to cut surfaces with the cut surfaces facing each other and has an inner side surface adjacent to outer side surfaces of the housed magnet segments, and a pressing unit adapted to press the magnet segments housed in the housing part toward a bottom part of the housing part in a longitudinal direction. The magnet segments are restrained in a width direction and a thickness direction by the inner side surface of the housing part when the magnet segments are pressed by the pressing unit.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: May 3, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watanabe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi
  • Publication number: 20160111944
    Abstract: A magnet insertion method into a rotor core is to insert an assembly into a magnet insertion hole provided in the rotor core of an electric motor, the assembly being formed by laminating a plurality of members, including at least a plurality of magnet pieces, in a line. According to this magnet insertion method, the assembly is formed by arranging a front member, having a surface surrounded by a chamfered ridge line, to cause the surface to be a front side end surface upon insertion, by laminating, on its rear side in an insertion direction, other members, without having the chamfered ridge line, in a line along the insertion direction to cause the other members to be hidden inside a projection of the front member when being projected from an insertion hole side, and by temporarily holding the front member and the other members.
    Type: Application
    Filed: March 27, 2014
    Publication date: April 21, 2016
    Inventors: Takumi OHSHIMA, Kiyoshi HASEGAWA, Takashi SEKIKAWA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI, Hiroaki SHIBUKAWA
  • Publication number: 20160072370
    Abstract: A magnet inserting apparatus inserts a plurality of magnet parts into each of the magnet insertion slots provided in the rotor core of a motor. The magnet inserting apparatus comprises a guiding unit equipped with a magnet inlet and a magnet outlet and is configured to align the plurality of magnet parts inserted through the magnet inlet until the inserted magnet parts are ejected from the magnet outlet, and to guide the aligned magnet parts so as to be inserted from the magnet outlet to the magnet insertion slot. A size of the magnet inlet of the guiding unit is larger than a size of the magnet insertion slot, a size of the magnet outlet is the same as or smaller than the size of the magnet insertion slot, and the guiding unit is formed so that a shape from the magnet inlet to the outlet becomes a taper shape.
    Type: Application
    Filed: March 18, 2014
    Publication date: March 10, 2016
    Inventors: Kiyoshi HASEGAWA, Takumi OHSHIMA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI, Takashi SEKIKAWA
  • Publication number: 20160049851
    Abstract: A magnet inserting apparatus into magnet insertion slots of a rotor core is configured to arrange a guide tape (a belt-shaped member) along an inner wall surface of the magnet insertion slot, and the guide tape having a coefficient of friction smaller than that of the inner wall surface of the magnet insertion slot. The magnet inserting apparatus is configured to insert the magnet parts into the magnet insertion slot, the guide tape (the belt-shaped member) being arranged on the inner wall surface of the magnet insertion slot.
    Type: Application
    Filed: March 18, 2014
    Publication date: February 18, 2016
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kiyoshi HASEGAWA, Takumi OHSHIMA, Yasushi MATSUSHITA, Akihisa HORI, Michito KISHI, Takashi SEKIKAWA
  • Patent number: 9251951
    Abstract: A method of manufacturing a magnet segment of a field pole magnet body includes cleaving a magnet material at a plurality of cleavage target regions arranged with an interval in a longitudinal direction of the magnet material. The cleavage process includes cleaving the magnet material sequentially from the cleavage target region closer to one side edge of the longitudinal direction of the magnet material, wherein a notch is formed in each of the plurality of cleavage target regions of the magnet material such that a depth of the notch closer to the one side edge becomes deeper.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 2, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watanabe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro, Yasuhisa Koike
  • Publication number: 20160011282
    Abstract: A magnet evaluating device evaluates an evaluation magnet by passing the evaluation magnet, which is formed by connecting a plurality of magnetic sections with insulating material in between, and a master magnet of the same form through an alternating magnetic field generated by an excitation coil, measuring the eddy current occurring in the magnetic section as voltage or current occurring in a detection coil and comparing the measured value for the evaluation magnet and the measured value for the master magnet.
    Type: Application
    Filed: February 10, 2014
    Publication date: January 14, 2016
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Koji HIGAKI, Kimio NISHIMURA, Masahiro OMATA, Hideki WATANABE, Yasuhisa KOIKE, Takashi SEKIKAWA, Yasushi MATSUSHITA, Akihisa HORI, Takumi OHSHIMA, Michito KISHI, Kiyoshi HASEGAWA, Hiroaki SHIBUKAWA, Kazuhiro TAKAICHI, Hideo SAKUYAMA, Yuhei YAMANE, Yoshito OZAWA
  • Publication number: 20150270060
    Abstract: A manufacturing device for cleft magnets comprises a cleaving mechanism for cleaving a magnet plate by applying a pressing force to the magnet plate corresponding to a back of a groove formed on one surface of the magnet plate and a carry-in mechanism for carrying the magnet plate to a cleaving position by the cleaving mechanism. By comprising a foreign matter removal mechanism for removing a foreign matter adhering to the magnet plate before the magnet plate is carried to the cleaving position by the carry-in mechanism, the foreign matter adhering to the magnet plate is removed before cleaving.
    Type: Application
    Filed: September 19, 2013
    Publication date: September 24, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroaki Shibukawa, Kimio Nishimura, Masahiro Omata, Takashi Sekikawa, Yasushi Matsushita, Kiyoshi Hasegawa, Akihisa Hori, Takumi Ohshima, Michito Kishi, Hideki Watanabe
  • Publication number: 20150158197
    Abstract: An apparatus for manufacturing magnet segments constituting a field pole magnetic body by cleaving a magnetic body having a coating applied to outer surfaces at a plurality of scheduled cleaving parts includes placing tables on which the magnetic body is to be placed, a pressing unit adapted to cleave the magnetic body by pressing the magnetic body at the scheduled cleaving part arranged between two placing tables, and a cutting unit adapted to cut the coating present at the scheduled cleaving part pressed by the pressing unit after the magnetic body is cleaved.
    Type: Application
    Filed: June 12, 2013
    Publication date: June 11, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watanabe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi
  • Publication number: 20150143691
    Abstract: An apparatus for manufacturing a field pole magnetic body formed by laminating magnet segments produced by cutting and dividing a permanent magnet and to be arranged in a rotary electric machine includes a housing part adapted to successively house a plurality of the magnet segments having adhesive applied to cut surfaces with the cut surfaces facing each other and has an inner side surface adjacent to outer side surfaces of the housed magnet segments, and a pressing unit adapted to press the magnet segments housed in the housing part toward a bottom part of the housing part in a longitudinal direction. The magnet segments are restrained in a width direction and a thickness direction by the inner side surface of the housing part when the magnet segments are pressed by the pressing unit.
    Type: Application
    Filed: June 12, 2013
    Publication date: May 28, 2015
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watanabe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi
  • Publication number: 20150034691
    Abstract: A method of manufacturing a magnet segment of a field pole magnet body includes cleaving a magnet material at a plurality of cleavage target regions arranged with an interval in a longitudinal direction of the magnet material. The cleavage process includes cleaving the magnet material sequentially from the cleavage target region closer to one side edge of the longitudinal direction of the magnet material, wherein a notch is formed in each of the plurality of cleavage target regions of the magnet material such that a depth of the notch closer to the one side edge becomes deeper.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 5, 2015
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watanabe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro, Yasuhisa Koike
  • Publication number: 20150000114
    Abstract: A device for manufacturing a field pole magnet body includes a reference jig having reference surfaces in a lengthwise direction, a width direction, and a thickness direction for positioning the plurality of cleaved and divided magnet fragments in an aligned state with their cleaved faces facing each other; a lengthwise direction pressing means that presses the plurality of magnet fragments from the lengthwise direction in which they are arranged to the lengthwise direction reference surface in order to align the magnet fragments in the lengthwise direction; a width direction pressing means that presses the plurality of magnet fragments from the width direction of the magnet fragments to the width direction reference surface to align them in the width direction; and a thickness pressing means that presses the plurality of magnet fragments from the thickness direction of the magnet fragments to the thickness direction reference surface to align them in the thickness direction.
    Type: Application
    Filed: November 19, 2012
    Publication date: January 1, 2015
    Inventors: Yasushi Matsushita, Hideki Watanabe, Takashi Sekikawa, Kimio Nishimura, Kazuhiro Takaichi, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro
  • Publication number: 20140360009
    Abstract: A manufacturing device for a field pole magnet body includes a reference jig having reference surfaces in the lengthwise direction, width direction, and thickness direction for positioning a plurality of cleaved and divided magnet fragments in an aligned state. The manufacturing device further includes a first pressing means that presses the plurality of magnet fragments to the thickness direction reference surface from the thickness direction of a magnet body to align them in the thickness direction, and a second pressing means that presses the plurality of magnet fragments to the width direction reference surface from the width direction of the magnet body to align them in the width direction. An operational axis line of a pressing part of at least one of the first and second pressing means is arranged to be tilted such that it approaches the lengthwise direction reference surface at the side that abuts the magnet fragments.
    Type: Application
    Filed: November 6, 2012
    Publication date: December 11, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Yasushi Matsushita, Hideki Watanabe, Takashi Sekikawa, Kimio Nishimura, Kazuhiro Takaichi, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro
  • Publication number: 20140331483
    Abstract: A one-piece field-pole magnet is manufactured by filling a gap formed between magnetic pieces placed on a plane with an adhesive or resin. During the process, a pushing member applies a pushing force onto each of the magnet pieces in a thickness direction thereof. The pushing member comprises pushing parts each of which pushes each of the magnet pieces, thereby equalizing the pushing forces applied to the respective magnet pieces.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 13, 2014
    Inventors: Kazuhiro Takaichi, Kimio Nishimura, Hideki Watababe, Takashi Sekikawa, Yasushi Matsushita, Akihisa Hori, Takumi Ohshima, Michito Kishi, Kunitomo Ishiguro, Yasuhisa Koike
  • Patent number: 7794306
    Abstract: An apparatus and method for surface finishing a workpiece is disclosed as including a workpiece supporting mechanism supporting a workpiece having a target shaped periphery with a given width to be surface finished and a tool holder holding a surface finish tool in abutting contact with the target shaped periphery of the workpiece. A pressure applying mechanism is operative to apply a pressure force to the surface finish tool through the tool holder to cause the surface finish tool to be held in pressured contact with the target shaped periphery, with the pressure force exhibiting a given distribution pattern depending upon an axial direction of the workpiece. A drive mechanism rotates the workpiece to allow the surface finish tool to surface finish the target shaped periphery into a given geometrical profile, variably contoured along an axis of the workpiece depending on the given pressure distribution pattern.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: September 14, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tomohiro Kondo, Masahiko Iizumi, Masahiro Omata, Kiyoshi Hasegawa, Takashi Ogino, Takafumi Watanabe, Yoshiyuki Chida, Yasushi Matsushita, Kazuo Takeda
  • Patent number: 7413498
    Abstract: A film feeder (FF1) feeds a film (1), a first drive (20) rotates a work (W), a second drive (30) moves the work (W) relative to the film (1), a shoe set handler (40) handles the shoe set (2) to press the film (1) against the work (W), and a deterioration delayer (C) is configured to delay an abrasivity deterioration of the film (1).
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: August 19, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masahiro Omata, Masahiko Iizumi, Kiyoshi Hasegawa, Takashi Ogino, Tomohiro Kondo, Kazuo Takeda, Takafumi Watanabe, Yoshiyuki Chida, Yasushi Matsushita
  • Patent number: 7033245
    Abstract: A lapping apparatus lapping a work having a pre-machined surface comprises a lapping film which includes a thin substrate having a surface provided with abrasive grains, a shoe disposed at a back surface side of the lapping film, a shoe driving unit which drives the shoe toward the work in order to press the abrasive-grained surface of the lapping film to the pre-machined surface of the work, a rotational driving unit which drives the work rotationally, a detecting unit which detects the position of the rotating work in the rotating direction, and a controlling unit which controls the pressing force of the shoe driving unit so as to drive the shoe correspondingly to the position of the work in the rotating direction during machining.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: April 25, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kiyoshi Hasegawa, Masahiko Iizumi, Masahiro Omata, Takashi Ogino, Tomohiro Kondo, Kazuo Takeda, Takafumi Watanabe, Yoshiyuki Chida, Yasushi Matsushita