Patents by Inventor Yasushi Toma

Yasushi Toma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040231989
    Abstract: There is a provided a substrate processing apparatus that can perform an electrolytic processing, which is different from a common, conventional etching, to remove (clean off) a conductive material (film) formed on or adhering to a bevel portion, etc. of a substrate or process a peripheral portion of a substrate through an electrochemical action. The substrate processing apparatus includes: an electrode section having a plurality of electrodes which are laminated with insulators being interposed, and having a holding portion which is to be opposed to a peripheral portion of a substrate: an ion exchanger disposed in the holding portion of the electrode section; a liquid supply section for supplying a liquid to the holding position of the electrode section; and a power source for applying a voltage to the electrodes of the electrode section so that the electrodes alternately have different polarities.
    Type: Application
    Filed: July 6, 2004
    Publication date: November 25, 2004
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita, Hozumi Yasuda
  • Publication number: 20040195109
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure water. The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 7, 2004
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Publication number: 20040129569
    Abstract: The present invention provides an electrolytic processing apparatus which, while eliminating a CMP processing entirely or reducing a load on a CMP processing to the least possible extent, can process and flatten a conductive material formed in the surface of a substrate, or can remove (clean) extraneous matter adhering to the surface of a workpiece such as a substrate. The present invention includes an electrode section including a plurality of electrode members disposed in parallel, each electrode member comprising an electrode and an ion exchanger covering the surface of the electrode, a holder for holding a workpiece, which is capable of bringing the workpiece close to or into contact with the ion exchanger of the electrode member, and a power source to be connected to the electrode of each electrode member of the electrode section. The ion exchanger of the electrode member comprises an ion exchanger having an excellent surface smoothness and an ion exchanger having a large ion exchange capacity.
    Type: Application
    Filed: September 25, 2003
    Publication date: July 8, 2004
    Inventors: Osamu Nabeya, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Takeshi Ilzumi, Nobuyuki Takada, Koichi Fukaya, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita
  • Publication number: 20040112761
    Abstract: There is provided a method and device for regenerating an ion exchanger which can regenerate an ion exchanger easily and quickly, and can minimize a load upon cleaning of the regenerated ion exchanger and disposal of waste liquid. A method for regenerating a contaminated ion exchanger includes: providing a pair of a regeneration electrode and a counter electrode, a partition disposed between the electrodes, and an ion exchanger to be regenerated disposed between the counter electrode and the partition; and applying a voltage between the regeneration electrode and the counter electrode while supplying a liquid between the partition and the regeneration electrode and also supplying a liquid between the partition and the counter electrode.
    Type: Application
    Filed: November 18, 2003
    Publication date: June 17, 2004
    Inventors: Takayuki Saito, Tsukuru Suzuki, Yuji Makita, Kaoru Yamada, Masayuki Kumekawa, Hozumi Yasuda, Osamu Nabeya, Kazuto Hirokawa, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata
  • Patent number: 6743349
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure water. The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: June 1, 2004
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Publication number: 20030230493
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 18, 2003
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Patent number: 6602396
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 5, 2003
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20030136668
    Abstract: There is provided an electrolytic processing device including: a processing electrode brought into contact with or close to a workpiece; a feeding electrode for supplying electricity to the workpiece; an ion exchanger disposed in at least one of the spaces between the workpiece and the processing electrode, and between the workpiece and the feeding electrode; a power source for applying a voltage between the processing electrode and the feeding electrode; and a liquid supply section for supplying a liquid to the space between the workpiece and at least one of the processing electrode and the feeding electrode, in which the ion exchanger is present. A substrate processing apparatus having the electrolytic processing device is also provided.
    Type: Application
    Filed: January 7, 2003
    Publication date: July 24, 2003
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita, Hozumi Yasuda
  • Publication number: 20030132103
    Abstract: There is provided an electrolytic processing device including: a processing electrode brought into contact with or close to a workpiece; a feeding electrode for supplying electricity to the workpiece; an ion exchanger disposed in at least one of the spaces between the workpiece and the processing electrode, and between the workpiece and the feeding electrode; a power source for applying a voltage between the processing electrode and the feeding electrode; and a liquid supply section or supplying a liquid to the space between the workpiece and at least one of the processing electrode and the feeding electrode, in which the ion exchanger is present. A substrate processing apparatus having the electrolytic processing device is also provided.
    Type: Application
    Filed: November 22, 2002
    Publication date: July 17, 2003
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita
  • Patent number: 6368493
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 9, 2002
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20020033343
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Application
    Filed: November 30, 2001
    Publication date: March 21, 2002
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20020020630
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure waters The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Application
    Filed: July 5, 2001
    Publication date: February 21, 2002
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Patent number: 5883470
    Abstract: A fast atomic beam (FAB) source is capable of generating fast atomic beams having characteristics of a high beam density, precise directionality, and a wide range of controlled out put energy levels. The FAB source includes a discharge tube, an inductively coupled plasma generator for generating gas plasma in the discharge tube from gas introduced therein, positive and negative electrodes for accelerating ions to control the beam for a variety of energy levels. The negative electrode has a beam control opening for generating a FAB, wherein directionability, neutralization factor, and other FAB characteristics are controlled.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: March 16, 1999
    Assignee: Ebara Corporation
    Inventors: Masahiro Hatakeyama, Katsunori Ichiki, Yasushi Toma, Masao Saitoh
  • Patent number: 5614663
    Abstract: The improved cantilever for use with an atomic force microscope comprises a single-crystal silicon base 11 having adequate mechanical strength, a cantilever beam 12 that is made from a silicon oxide film and which is joined at one end to the base, and a conical stylus 13 with a sharp tip that is formed of single-crystal silicon on the cantilever beam 12 at the 6 other end which is opposite the end joined to the base 11, and all surfaces of the cantilever are covered with a thin electroconductive film 14. If desired, protective plates 15 for protecting the cantilever beam against mechanical damage may be provided that are processed from the base material in such a way that they hold the beam therebetween and which have satisfactory strength. The stylus has an abrupt profile with a sharp tip and a high aspect ratio, and the cantilever beam has an invariable spring constant and supports the stylus at an end. The cantilever can be produced by a process comprising steps (a)-(k).
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: March 25, 1997
    Assignees: Ebara Research Co., Ltd., Agency of Industrial Science and Technology
    Inventors: Junju Itoh, Yasushi Toma
  • Patent number: 5594166
    Abstract: The improved cantilever for use with an atomic force microscope comprises a single-crystal silicon base 11 having adequate mechanical strength, a cantilever beam 12 that is made from a silicon oxide film and which is joined at one end to the base, and a conical stylus 13 with a sharp tip that is formed of single-crystal silicon on the cantilever beam 12 at the other end which is opposite the end joined to the base 11, and all surfaces of the cantilever are covered with a thin electroconductive film 14. If desired, protective plates 15 for protecting the cantilever beam against mechanical damage may be provided that are processed from the base material in such a way that they hold the beam therebetween and which have satisfactory strength. The stylus has an abrupt profile with a sharp tip and a high aspect ratio, and the cantilever beam has an invariable spring constant and supports the stylus at an end.
    Type: Grant
    Filed: September 22, 1994
    Date of Patent: January 14, 1997
    Assignees: Ebara Research Co., Ltd., Agency of Industrial Science and Technology
    Inventors: Junju Itoh, Yasushi Toma