Patents by Inventor Yasutaka NOMURA

Yasutaka NOMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11660589
    Abstract: An exhaust gas purification device that allows suppressing an increase in pressure loss is provided. The exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. The substrate includes a porous partition wall which defines inflow cells and outflow cells extending from an inflow side end to an outflow side end. The inflow cell side catalyst layer is disposed on a surface on the inflow cell side in an inflow cell side catalyst region from an inflow side end to a position close to an outflow side end of the partition wall. The permeability of a portion including an outflow side region from the position to the outflow side end of the partition wall is higher than a gas permeability of a portion including the inflow cell side catalyst region of the partition wall and the inflow cell side catalyst layer.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: May 30, 2023
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Masatoshi Ikebe, Ryota Nakashima, Yasutaka Nomura, Hirotaka Ori
  • Patent number: 11415039
    Abstract: There is provided a structure including: a substrate including a first and a second ends, and a porous partition wall defining a first and a second cells extending between the first and the second ends; a first catalyst; and a second catalyst. In a first area, the first catalyst is disposed on a first surface of the partition wall, and the partition wall with the first catalyst disposed on the partition wall is impermeable to gas. In a second area, the first catalyst is not provided, the second catalyst is disposed in a region including at least a part inside the partition wall, the part facing the first cell, and the partition wall with the second catalyst disposed in the partition wall is permeable to gas. In a third area, any of the first catalyst or the second catalyst is not provided, and the partition wall is permeable to gas.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: August 16, 2022
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa Nishioka, Naoto Miyoshi, Akemi Sato, Masatoshi Ikebe, Ryota Nakashima, Yasutaka Nomura
  • Patent number: 11364489
    Abstract: An exhaust gas purifying catalyst includes: a wall-flow structure substrate including an inlet cell, an outlet cell, and a porous partition; a first catalyst layer formed inside the partition such that a thickness of the first catalyst layer is between 40% and 60%, inclusive, of an overall thickness Tw of the partition; and a second catalyst layer formed inside the partition such that the second catalyst layer extends across an entire region of the partition in a thickness direction thereof.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: June 21, 2022
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruka Makino, Yasutaka Nomura, Satoru Inoda, Kenji Nakajima, Naoto Miyoshi, Takeru Yoshida, Akemi Sato
  • Patent number: 11187129
    Abstract: An exhaust gas purification including: a base of wall flow structure having inlet side cells wherein an end on the exhaust gas inflow side is open and outlet side cells wherein an end on the exhaust gas outflow side is open, and a porous partition wall that partitions the side cells; and first and second catalyst layers disposed in the interior of the porous partition wall so as to be in contact with the side cells, wherein either of the catalyst layers contains an oxidation catalyst but does not contain a reduction catalyst, and the other contains the reduction catalyst but does not contain the oxidation catalyst; and a ratio of the lengths of the catalyst layers differs between a surface of the porous partition wall on the side in contact with the inlet side cells and a surface on the side in contact with the outlet side cells.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 30, 2021
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasutaka Nomura, Satoru Inoda, Naoto Miyoshi, Akemi Sato
  • Patent number: 10934910
    Abstract: An exhaust gas cleaning catalyst that has: a substrate having a wall flow structure, wherein an entry side cell, in which the end part on an exhaust gas inflow side is open, and an exit side cell, in which the end part on the exhaust gas outflow side is open, are divided by a porous dividing wall; and a first catalyst layer that includes a metal catalyst and is disposed within the dividing wall so as to be in contact with the exit side cell and not in contact with the entry side cell, and no catalyst layer is provided in the region in contact with the entry side cell.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 2, 2021
    Assignee: CATALER CORPORATION
    Inventors: Haruka Makino, Yasutaka Nomura, Satoru Inoda, Sho Hoshino, Ryota Onoe
  • Publication number: 20210033009
    Abstract: An exhaust gas control apparatus includes: a honeycomb substrate including an inflow cell and an outflow cell adjacent to each other with a partition wall sandwiched between the inflow cell and the outflow cell; a first sealing part provided at an outflow side end of the inflow cell, and a second sealing part provided at an inflow side end of the outflow cell; and a catalyst layer provided on the partition wall, and at least one of the first sealing part and the second sealing part is an OSC material-containing sealing part containing an OSC material and a sealant, and a concentration of the OSC material in the OSC material-containing sealing part is uniform in an extending direction.
    Type: Application
    Filed: June 17, 2020
    Publication date: February 4, 2021
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Patent number: 10850269
    Abstract: The exemplary embodiments relate to an exhaust gas purification catalyst, in which exhaust gas purification performance is secured and an increase in pressure loss is suppressed, which is an exhaust gas purification catalyst, in which a porous filter wall of a substrate having a wall-flow structure is coated with a catalyst material containing an OSC material having oxygen storage capacity and a catalyst metal, wherein the density of percolation paths having percolation path diameters of 4 ?m or more per unit area inside of the filter wall coated with the catalyst material is 100 paths/mm2 to 1000 paths/mm2.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 1, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Atsushi Tanaka, Takeru Yoshida, Naoto Miyoshi, Akemi Sato, Yasutaka Nomura, Satoru Inoda
  • Publication number: 20200368735
    Abstract: An exhaust gas purification device that allows suppressing an increase in pressure loss is provided. The exhaust gas purification device of the present disclosure includes a honeycomb substrate and an inflow cell side catalyst layer. The substrate includes a porous partition wall which defines inflow cells and outflow cells extending from an inflow side end to an outflow side end. The inflow cell side catalyst layer is disposed on a surface on the inflow cell side in an inflow cell side catalyst region from an inflow side end to a position close to an outflow side end of the partition wall. The permeability of a portion including an outflow side region from the position to the outflow side end of the partition wall is higher than a gas permeability of a portion including the inflow cell side catalyst region of the partition wall and the inflow cell side catalyst layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 26, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji SUGIURA, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Publication number: 20200332698
    Abstract: There is provided a structure including: a substrate including a first and a second ends, and a porous partition wall defining a first and a second cells extending between the first and the second ends; a first catalyst; and a second catalyst. In a first area, the first catalyst is disposed on a first surface of the partition wall, and the partition wall with the first catalyst disposed on the partition wall is impermeable to gas. In a second area, the first catalyst is not provided, the second catalyst is disposed in a region including at least a part inside the partition wall, the part facing the first cell, and the partition wall with the second catalyst disposed in the partition wall is permeable to gas. In a third area, any of the first catalyst or the second catalyst is not provided, and the partition wall is permeable to gas.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Koji Sugiura, Hiromasa NISHIOKA, Naoto MIYOSHI, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA
  • Publication number: 20200316578
    Abstract: There is provided a filter catalyst that has a wall-flow structure, and the filter catalyst has an excellent purification performance. The embodiment is a filter catalyst including a wall-flow type substrate that includes an inlet-side cell, an outlet-side cell, and a partition wall. The inlet-side cell has an open end portion on an exhaust gas flow-in side and a closed end portion on an exhaust gas flow-out side. The outlet-side cell is adjacent to the inlet-side cell and has an open end portion on the exhaust gas flow-out side and a closed end portion on the exhaust gas flow-in side. The partition wall has a porous structure and interposes between the inlet-side cell and the outlet-side cell. The filter catalyst includes an oxygen occlusion portion and a catalyst portion dispersed and disposed in the porous structure. The oxygen occlusion portion is disposed on a wall surface of the porous structure.
    Type: Application
    Filed: March 13, 2020
    Publication date: October 8, 2020
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Naoto MIYOSHI, Koji SUGIURA, Hiromasa NISHIOKA, Akemi SATO, Masatoshi IKEBE, Ryota NAKASHIMA, Yasutaka NOMURA, Hirotaka ORI
  • Publication number: 20200276567
    Abstract: Provided is an exhaust gas purification catalyst that allows enhancing purification performance on exhaust gas. The exhaust gas purification catalyst according to the present invention has a substrate 10 of wall flow structure having a porous partition wall 16 which partitions inlet cells 12 and outlet cells 14, a first catalyst layer 20 formed on the surface of the partition wall 16, on the side facing the inlet cells 12, and a second catalyst layer 30 formed in the interior of the partition wall 16, at least in a region facing the outlet cells 14.
    Type: Application
    Filed: February 15, 2018
    Publication date: September 3, 2020
    Applicant: CATALER CORPORATION
    Inventors: Ryota ONOE, Yasutaka NOMURA, Satoru INODA
  • Publication number: 20200276568
    Abstract: An exhaust gas purifying catalyst includes: a wall-flow structure substrate including an inlet cell, an outlet cell, and a porous partition; a first catalyst layer formed inside the partition such that a thickness of the first catalyst layer is between 40% and 60%, inclusive, of an overall thickness Tw of the partition; and a second catalyst layer formed inside the partition such that the second catalyst layer extends across an entire region of the partition in a thickness direction thereof.
    Type: Application
    Filed: October 12, 2018
    Publication date: September 3, 2020
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruka MAKINO, Yasutaka NOMURA, Satoru INODA, Kenji NAKAJIMA, Naoto MIYOSHI, Takeru YOSHIDA, Akemi SATO
  • Publication number: 20200263587
    Abstract: An exhaust gas purification including: a base of wall flow structure having inlet side cells wherein an end on the exhaust gas inflow side is open and outlet side cells wherein an end on the exhaust gas outflow side is open, and a porous partition wall that partitions the side cells; and first and second catalyst layers disposed in the interior of the porous partition wall so as to be in contact with the side cells, wherein either of the catalyst layers contains an oxidation catalyst but does not contain a reduction catalyst, and the other contains the reduction catalyst but does not contain the oxidation catalyst; and a ratio of the lengths of the catalyst layers differs between a surface of the porous partition wall on the side in contact with the inlet side cells and a surface on the side in contact with the outlet side cells.
    Type: Application
    Filed: September 11, 2018
    Publication date: August 20, 2020
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasutaka NOMURA, Satoru INODA, Naoto MIYOSHI, Akemi SATO
  • Patent number: 10626765
    Abstract: An exhaust gas purification device includes: a substrate of wall-flow structure having an inlet cell, an outlet cell and a porous partition wall; an upstream catalyst layer provided inside the partition wall and disposed in an upstream portion, including an exhaust gas inflow end section, of the substrate; and a downstream catalyst layer provided inside the partition wall and disposed in a downstream portion, including an exhaust gas outflow end section, of the substrate. The downstream catalyst layer contains a carrier, and Rh supported on the carrier. The upstream catalyst layer contains a carrier, and Pd and/or Pt supported on the carrier.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 21, 2020
    Assignee: CATALER CORPORATION
    Inventors: Satoru Inoda, Yasutaka Nomura, Junji Kuriyama, Naoto Miyoshi, Masahiko Takeuchi, Akemi Sato
  • Publication number: 20200011221
    Abstract: An exhaust gas cleaning catalyst that has: a substrate having a wall flow structure, wherein an entry side cell, in which the end part on an exhaust gas inflow side is open, and an exit side cell, in which the end part on the exhaust gas outflow side is open, are divided by a porous dividing wall; and a first catalyst layer that includes a metal catalyst and is disposed within the dividing wall so as to be in contact with the exit side cell and not in contact with the entry side cell, and no catalyst layer is provided in the region in contact with the entry side cell.
    Type: Application
    Filed: March 16, 2018
    Publication date: January 9, 2020
    Applicant: CATALER CORPORATION
    Inventors: Haruka MAKINO, Yasutaka NOMURA, Satoru INODA, Sho HOSHINO, Ryota ONOE
  • Publication number: 20190201884
    Abstract: The exemplary embodiments relate to an exhaust gas purification catalyst, in which exhaust gas purification performance is secured and an increase in pressure loss is suppressed, which is an exhaust gas purification catalyst, in which a porous filter wall of a substrate having a wall-flow structure is coated with a catalyst material containing an OSC material having oxygen storage capacity and a catalyst metal, wherein the density of percolation paths having percolation path diameters of 4 ?m or more per unit area inside of the filter wall coated with the catalyst material is 100 paths/mm2 to 1000 paths/mm2.
    Type: Application
    Filed: December 7, 2018
    Publication date: July 4, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Atsushi TANAKA, Takeru YOSHIDA, Naoto MIYOSHI, Akemi SATO, Yasutaka NOMURA, Satoru INODA
  • Publication number: 20190120104
    Abstract: An exhaust gas purification device includes: a substrate of wall-flow structure having an inlet cell, an outlet cell and a porous partition wall; an upstream catalyst layer provided inside the partition wall and disposed in an upstream portion, including an exhaust gas inflow end section, of the substrate; and a downstream catalyst layer provided inside the partition wall and disposed in a downstream portion, including an exhaust gas outflow end section, of the substrate. The downstream catalyst layer contains a carrier, and Rh supported on the carrier. The upstream catalyst layer contains a carrier, and Pd and/or Pt supported on the carrier.
    Type: Application
    Filed: March 21, 2017
    Publication date: April 25, 2019
    Applicant: CATALER CORPORATION
    Inventors: Satoru INODA, Yasutaka NOMURA, Junji KURIYAMA, Naoto MIYOSHI, Masahiko TAKEUCHI, Akemi SATO
  • Patent number: 10159934
    Abstract: Provided is an exhaust gas purification catalyst that combines reduction of pressure loss and enhancement of purification performance. This invention provides an exhaust gas purification catalyst comprising a wall-flow-type substrate and first and second catalytic layers. The first catalytic layer is provided to the interior of a partition wall, in contact with an entrance cell, from an exhaust inlet-side end in the running direction, having a length L1 less than Lw. The second catalytic layer is provided to the interior of a partition wall, in contact with an exit cell, from an exhaust outlet-side end in the running direction, having a length L2 less than Lw. An internal portion of partition wall in contact with entrance cell has a substrate-exposing segment near the exhaust outlet-side end.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: December 25, 2018
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ichiro Kitamura, Keiichi Narita, Yasutaka Nomura, Ryota Onoe, Yuta Morishita, Junji Kuriyama, Hiroshi Sekine, Akihito Inoue, Daisuke Ochiai, Jun Sawada, Naoto Miyoshi, Masahiko Takeuchi, Akemi Sato, Atsushi Tanaka
  • Patent number: 10086363
    Abstract: The exhaust gas purification device includes: a substrate of wall flow structure having inlet cells, outlet cells and a porous partition wall; and a catalyst layer provided in at least part of internal pores of the partition wall and held on the surface of the internal pores. The relationship between an average filling factor A of the catalyst layer held in pores having a pore diameter of 5 ?m to less than 10 ?m, an average filling factor B of the catalyst layer held in pores having a pore diameter of 10 ?m to less than 20 ?m and an average filling factor C of the catalyst layer held in pores having a pore diameter of 20 ?m to less than 30 ?m, among the internal pores of the partition wall 16 in which the catalyst layer is held, satisfies the following expression: A<B<C.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 2, 2018
    Assignee: CATALER CORPORATION
    Inventors: Ryota Onoe, Yasutaka Nomura, Yuta Morishita, Junji Kuriyama, Hiroshi Sekine
  • Patent number: 10076725
    Abstract: A wall-flow-type exhaust gas purification catalyst with an oxygen storage material that has an increased OSC and exhibits its OSC without a compromise provides an exhaust gas purification catalyst having a wall-flow-type substrate, a first catalytic layer and a second catalytic layer. The first catalytic layer is provided to an internal portion of a partition wall in contact with an entrance cell. The second catalytic layer is provided to an internal portion of a partition wall in contact with an exit cell. Each of the first and second catalytic layers has an oxygen storage material. The ratio (D1/D2) of the coating density D1 of the first catalytic layer to the coating density D2 of the second catalytic layer is 1.1 to 1.8.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: September 18, 2018
    Assignees: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryota Onoe, Shingo Sakagami, Yasutaka Nomura, Yuta Morishita, Junji Kuriyama, Hiroshi Sekine, Daisuke Ochiai, Naoto Miyoshi, Masahiko Takeuchi, Akemi Sato