Patents by Inventor Yasutaka Shigemoto

Yasutaka Shigemoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10916373
    Abstract: A sintered R-T-B based magnet composition includes: R: not less than 27 mass % and not more than 37 mass % (R is at least one rare-earth element which always includes at least one of Nd and Pr), B: not less than 0.75 mass % and not more than 0.97 mass %, Ga: not less than 0.1 mass % and not more than 1.0 mass %, Cu: not less than 0 mass % and not more than 1.0 mass %, and T: 61.03 mass % or more (where T is at least one selected from Fe, Co, Al, Mn and Si and always includes Fe, such that the Fe content is 80 mass % or more in the entire T). [T]/[B] is greater than 14.0. An R amount is greater in the surface than in the center, and a Ga amount is greater in the surface than in the center. [T]/[B] in the surface is higher than [T]/[B] in the center.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: February 9, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Noriyuki Nozawa, Yasutaka Shigemoto, Takeshi Nishiuchi
  • Publication number: 20190326053
    Abstract: In an embodiment, a sintered R-T-B based magnet according to the present disclosure has a composition as follows: R: not less than 27 mass % and not more than 37 mass % (R is at least one rare-earth element which always includes at least one of Nd and Pr), B: not less than 0.75 mass % and not more than 0.97 mass %, Ga: not less than 0.1 mass % and not more than 1.0 mass %, Cu: not less than 0 mass % and not more than 1.0 mass %, and T: 61.03 mass % or more (where T is at least one selected from the group consisting of Fe, Co, Al, Mn and Si and always includes Fe, such that the Fe content accounts for 80 mass % or more in the entire T). The molar ratio of T to B ([T]/[B]) is greater than 14.0. An R amount in a magnet surface portion is greater than an R amount in a magnet central portion, and a Ga amount in the magnet surface portion is greater than a Ga amount in the magnet central portion.
    Type: Application
    Filed: November 30, 2017
    Publication date: October 24, 2019
    Inventors: Noriyuki NOZAWA, Yasutaka SHIGEMOTO, Takeshi NISHIUCHI
  • Publication number: 20180047504
    Abstract: [Problem] There is provided a method of producing a sintered R-T-B based magnet in which even the intergranular grain boundaries in the magnet interior can be made thick, which does not allow coercivity improvement effects to be significantly undermined even after a surface grinding, and which has high coercivity without the use of heavy rare-earth elements. [Solution] It includes: a step of providing an R1-T1-A-X (where R1 is mainly Nd; T1 is mainly Fe; A is at least one of Ga, Ti, Zr, Hf, V, Nb and Mo; and X is mainly B) based sintered alloy compact which is mainly characterized in that a molar ratio of Ti/(X-2A) is not less than 13; a step of providing an R2-Ga—Cu (where R2 is mainly Pr and/or Nd and accounts for 65 mol % and not more than 95 mol %; and Cu/(Ga+Cu) is not less than 0.1 and not more than 0.
    Type: Application
    Filed: February 16, 2016
    Publication date: February 15, 2018
    Inventors: Takeshi NISHIUCHI, Yasutaka SHIGEMOTO, Noriyuki NOZAWA
  • Publication number: 20180025819
    Abstract: A step of providing an R1-T1-X (where R1 is mainly Nd; T1 is mainly Fe; and X is mainly B) based sintered alloy compact mainly characterized by a molar ratio of [T1]/[X] being 13.0 or more; a step or providing an R2-Ga—Cu (where R2 is mainly Pr and/or Nd and accounts for not less than 65 mol % and not more than 95 mol %; and [Cu]/([Ga]+[Cu]) is not less than 0.1 and not more than 0.9 by mole ratio) based alloy; and a step of, while allowing at least a portion of a surface of the R1-T1-X based sintered alloy compact to be in contact with at least a portion of the R2-Ga—Cu based alloy, performing a heat treatment at a temperature which is not less than 450° C. and not more than 600° C.
    Type: Application
    Filed: February 16, 2016
    Publication date: January 25, 2018
    Applicant: HITACHI METALS, LTD.
    Inventors: Yasutaka SHIGEMOTO, Takeshi NISHIUCHI, Futoshi KUNIYOSHI, Noriyuki NOZAWA
  • Patent number: 7988797
    Abstract: A nanocomposite magnet according to the present invention has a composition represented by the general formula: RxQyMz(Fe1-mTm)bal, where R is at least one rare-earth element, Q is at least one element selected from the group consisting of B and C, M is at least one metal element that is selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb and that always includes Ti, and T is at least one element selected from the group consisting of Co and Ni. The mole fractions x, y, z and m satisfy the inequalities of 6 at %?x<10 at %, 10 at %?y?17 at %, 0.5 at %?z?6 at % and 0?m?0.5, respectively. The nanocomposite magnet includes a hard magnetic phase and a soft magnetic phase that are magnetically coupled together. The hard magnetic phase is made of an R2Fe14B-type compound, and the soft magnetic phase includes an ?-Fe phase and a crystalline phase with a Curie temperature of 610° C. to 700° C. (? phase) as its main phases.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 2, 2011
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yasutaka Shigemoto, Satoshi Hirosawa, Toshio Miyoshi
  • Publication number: 20100219922
    Abstract: A nanocomposite magnet according to the present invention has a composition represented by the general formula: RxQyMz(Fe1-mTm)bal, where R is at least one rare-earth element, Q is at least one element selected from the group consisting of B and C, M is at least one metal element that is selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb and that always includes Ti, and T is at least one element selected from the group consisting of Co and Ni. The mole fractions x, y, z and m satisfy the inequalities of 6 at %?x<10 at %, 10 at %?y?17 at %, 0.5 at %?z?6 at % and 0?m?0.5, respectively. The nanocomposite magnet includes a hard magnetic phase and a soft magnetic phase that are magnetically coupled together. The hard magnetic phase is made of an R2Fe14B-type compound, and the soft magnetic phase includes an ?-Fe phase and a crystalline phase with a Curie temperature of 610° C. to 700° C. (? phase) as its main phases.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 2, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Yasutaka SHIGEMOTO, Satoshi HIROSAWA, Toshio MIYOSHI
  • Patent number: 7297213
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x?20 at %; 6 at %?y<10 at %; 0.1 at %?z?12 at %; and 0?m?0.5, respectively.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: November 20, 2007
    Assignee: Neomax Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Publication number: 20070131309
    Abstract: A nanocomposite magnet according to the present invention has a composition represented by the general formula: RxQyMz(Fe1?mTm)bal, where R is at least one rare-earth element, Q is at least one element selected from the group consisting of B and C, M is at least one metal element that is selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb and that always includes Ti, and T is at least one element selected from the group consisting of Co and Ni. The mole fractions x, y, z and m satisfy the inequalities of 6 at % ?x<10 at %, 10 at % ?y?17 at %, 0.5 at % ?z?6 at % and 0?m?0.5, respectively. The nanocomposite magnet includes a hard magnetic phase and a soft magnetic phase that are magnetically coupled together. The hard magnetic phase is made of an R2Fe14B-type compound, and the soft magnetic phase includes an ?-Fe phase and a crystalline phase with a Curie temperature of 610° C. to 700° C. (? phase) as its main phases.
    Type: Application
    Filed: December 6, 2004
    Publication date: June 14, 2007
    Applicant: NEOMAX CO., LTD.
    Inventors: Yasutaka Shigemoto, Satoshi Hirosawa, Toshio Miyoshi
  • Publication number: 20040134567
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Application
    Filed: December 24, 2003
    Publication date: July 15, 2004
    Applicant: Sumitomo Special Metals Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Patent number: 6706124
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: March 16, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Patent number: 6585831
    Abstract: A method of making an iron base magnetic material alloy powder includes the steps of: preparing an iron base magnetic material alloy containing at least 50% by mass of iron; and pulverizing the magnetic material alloy using a pin mill. A portion of the mill, which comes into contact with the magnetic material alloy, is made of a cemented carbide material at least partially.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: July 1, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Yasutaka Shigemoto, Satoshi Hirosawa
  • Patent number: 6471786
    Abstract: The inventive method for preparing nanocomposite magnet powder includes the step of preparing material alloy powder for a nanocomposite magnet represented by a general formula Fe100−x−y−z−uRxByCozMu where R is a rare-earth element of which 90-100 atomic percent is Pr and/or Nd while 0-10 atomic percent is another lanthanoid and/or Y, and the molar fractions x, y, z and u meet the inequalities of 2≦x≦6, 16≦y≦20, 0.2≦z≦7 and 0.01≦u≦7, respectively. The powder includes a metastable phase and an amorphous structure existing in a metal structure. Heat treatment is performed for the material alloy powder to crystallize Fe3B and Fe—R—B compounds from the amorphous structure. An integral value of the difference between a temperature-time curve represented by the temperature of the material alloy powder as a function of the heat treatment time during the heat treatment and a reference temperature-time curve is in a range from 10° C.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: October 29, 2002
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Yasutaka Shigemoto, Satoshi Hirosawa, Hirokazu Kanekiyo
  • Publication number: 20020017339
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Application
    Filed: May 24, 2001
    Publication date: February 14, 2002
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Patent number: 6302972
    Abstract: An inventive material alloy for a nanocomposite magnet is represented by a general formula Fe100−x−yRxBy, Fe100−x−y−zRxByCoz, Fe100−x−y−uRxByMu or Fe100−x−y−z−uRxByCozMu. R is a rare-earth element. 90 atomic percent or more of R is Pr and/or Nd, while equal to or larger than 0 atomic percent and less than 10 atomic percent of R is another lanthanoid and/or Y. M is at least one element selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Au and Ag. The molar fractions x, y, z and u meet the inequalities of 2≦x≦6, 16≦y≦20, 0.2≦z≦7 and 0.01≦u≦7, respectively. The alloy includes a metastable phase Z represented by at least one of a plurality of Bragg reflection peaks observable by X-ray diffraction analysis. The at least one peak corresponds to a lattice spacing of 0.179 nm±0.005 nm.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: October 16, 2001
    Assignee: Sumitomo Special Metals Co., LTD
    Inventors: Satoshi Hirosawa, Hirokazu Kanekiyo, Yasutaka Shigemoto
  • Publication number: 20010020494
    Abstract: A method of making an iron base magnetic material alloy powder includes the steps of: preparing an iron base magnetic material alloy containing at least 50% by mass of iron; and pulverizing the magnetic material alloy using a pin mill. A portion of the mill, which comes into contact with the magnetic material alloy, is made of a cemented carbide material at least partially.
    Type: Application
    Filed: December 21, 2000
    Publication date: September 13, 2001
    Inventors: Yasutaka Shigemoto, Satoshi Hirosawa