Patents by Inventor Yasutaka TSUCHIDA

Yasutaka TSUCHIDA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210061252
    Abstract: When a first type gear shift line is used as a gear shift line to change the gear ratio, and a predetermined condition including a condition that a state of charge of the power storage device is equal to or lower than a first ratio is satisfied, the control device changes the gear shift line to a second type gear shift line that recommends a lower speed gear ratio than the first type gear shift line.
    Type: Application
    Filed: August 12, 2020
    Publication date: March 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuhiro HIASA, Takahiro KIMURA, Yasutaka TSUCHIDA, Shinichi SASADE
  • Publication number: 20210061259
    Abstract: When the required driving force is larger than the first upper limit driving force, the control device sets a target compensation power of a power storage device, based on a difference between the required driving force and the first upper limit driving force. Further, the control device gradually increases a working compensation power toward the target compensation power when the gear ratio of the stepped transmission is changed, compared with an increase in the working compensation power when the gear ratio of the stepped transmission is not changed.
    Type: Application
    Filed: August 12, 2020
    Publication date: March 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi KOHNO, Shinichi SASADE, Takahiro KIMURA, Yasutaka TSUCHIDA
  • Publication number: 20210061257
    Abstract: In a hybrid vehicle including an engine, a first motor, a differential unit, a second motor, a driving force split device, and a controller, the controller is configured to control the engine, the first motor, and the second motor such that the hybrid vehicle travels with the engine rotating within a range of an allowable maximum rotational speed for control or less. In this case, the controller is configured to set the allowable maximum rotational speed such that the allowable maximum rotational speed is higher when a main-side ratio is lower than when the main-side ratio is higher. The main-side ratio is a ratio of a driving force that is transmitted to main drive wheels to the total driving force that is transmitted from a drive shaft to the main drive wheels and sub drive wheels via the driving force split device.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koichi OKUDA, Atsushi TABATA, Yasutaka TSUCHIDA, Yuuki MAKINO
  • Publication number: 20210061251
    Abstract: In a hybrid vehicle, when a required driving force is equal to or smaller than a first upper limit driving force, a control device sets a target driving force to the required driving force. When the required driving force is larger than the first upper limit driving force, the control device sets a target compensation power of a power storage device, based on a difference between the required driving force and the first upper limit driving force. The control device sets a second upper limit driving force of a driveshaft when an upper limit power is output from an engine and the power storage device is charged or discharged with a power based on the target compensation power. The control device sets a target driving force to the smaller between the required driving force and the second upper limit driving force. This configuration suppresses deterioration of the driver's drive feeling.
    Type: Application
    Filed: August 12, 2020
    Publication date: March 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takahiro KIMURA, Yasuhiro HIASA, Yasutaka TSUCHIDA
  • Publication number: 20210039628
    Abstract: A control device for a hybrid vehicle includes: a drive control unit that calculates required drive power which is required for a hybrid vehicle based on an accelerator opening when an accelerator return operation is performed, calculates a target engine output which changes slowly with respect to a required engine output for realizing the required drive power through slow change processing, and controls an engine, a first rotary machine, and a second rotary machine such that an engine output reaches the target engine output; and a smoothing rate setting unit that changes a smoothing rate which is used for the slow change processing based on a supercharging pressure and sets the smoothing rate to a smaller value when the supercharging pressure is high than when the supercharging pressure is low.
    Type: Application
    Filed: July 10, 2020
    Publication date: February 11, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi TABATA, Koichi OKUDA, Tooru MATSUBARA, Yasuhiro HIASA, Yasutaka TSUCHIDA
  • Publication number: 20210039626
    Abstract: There are provided a controller and a control method for a hybrid vehicle including an engine with a supercharger serving as a drive power source for travel, a rotary machine serving as a drive power source for travel, and a power storage device configured to transmit and receive electric power to and from the rotary machine. The controller determines whether an operation of the supercharger is limited, compensates for a torque shortage of the engine due to limitation of the operation of the supercharger by a torque of the rotary machine when it is determined that the operation of the supercharger is limited, and curbs a decrease in an amount of electric power stored in the power storage device more when it is determined that the operation of the supercharger is limited than when it is determined that the operation of the supercharger is not limited.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 11, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tooru MATSUBARA, Atsushi Tabata, Koichi Okuda, Yasutaka Tsuchida, Kenta Kumazaki, Tatsuya Imamura
  • Publication number: 20210031745
    Abstract: An MG1 torque at a time of decreasing an engine speed of an engine is made larger when a turbocharging pressure by a turbocharger is higher than when the turbocharging pressure is lower. In this way, even if the losses of pumps of the engine differ due to the remaining turbocharging pressure during a transition of stopping the engine in turbocharging, it is possible to appropriately reduce the engine speed. Therefore, when the engine is being brought to a stop, it is possible to appropriately suppress vibration generated in the vehicle.
    Type: Application
    Filed: June 10, 2020
    Publication date: February 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi TABATA, Koichi OKUDA, Tooru MATSUBARA, Yasuhiro HIASA, Yasutaka TSUCHIDA
  • Publication number: 20210031746
    Abstract: When an engine during rotation stop is started, a target cranking speed is set to a value at which a first rotating machine MG1 is maintained in an electric power generation state when a request engine power is an output that needs a turbocharging pressure and which is higher than when the request output is not the output that needs the turbocharging pressure, and even after the engine is brought into the operating state, an MG1 cranking torque is controlled to apply a torque for increasing an engine speed of the engine to the target cranking speed to the engine. In this way, it is possible to increase the engine speed after an autonomous operation more quickly while suppressing power consumption of the first rotating machine MG1.
    Type: Application
    Filed: July 9, 2020
    Publication date: February 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi TABATA, Koichi OKUDA, Tooru MATSUBARA, Yasuhiro HIASA, Yasutaka TSUCHIDA
  • Publication number: 20210031747
    Abstract: When an acceleration request is issued, an electronic control unit for a hybrid vehicle performs control for producing an acceleration feeling of setting a target engine rotation speed to an initial rotation speed (=basic initial value+initial value correction value) which is lower than an optimal-fuel-efficiency rotation speed at which required engine power is able to be most efficiently output and increasing the engine rotation speed from the initial rotation speed to the optimal-fuel-efficiency rotation speed at a rotation speed increase rate (=basic increase rate+increase rate correction value) based on the elapse of time. When the target supercharging pressure is high, the initial value correction value is set to a greater value and the increase rate correction value is set to a greater value than when the target supercharging pressure is low.
    Type: Application
    Filed: July 21, 2020
    Publication date: February 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi TABATA, Koichi OKUDA, Tooru MATSUBARA, Yasuhiro HIASA, Yasutaka TSUCHIDA
  • Publication number: 20210010410
    Abstract: A rotation adjusting device is controlled such that an engine speed rising rate at the time of acceleration request is made smaller when a turbocharging pressure is lower than the turbocharging pressure is higher. Therefore, an engine speed can be increased at such a low speed that a rising delay in the turbocharging pressure hardly occurs, in a low turbocharging pressure region. Further, when the rotation adjusting device is controlled such that the engine speed rising rate at the time of the acceleration request is set to a value corresponding to the turbocharging pressure, an MG2 torque is controlled to compensate for an insufficient drive torque of an actual engine torque for a request engine torque. Therefore, even when the engine torque is increased slowly by increasing the engine speed at a slow speed, the insufficient drive torque is compensated for by the MG2 torque.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 14, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Atsushi TABATA, Koichi OKUDA, Tooru MATSUBARA, Takahiro KIMURA, Yasutaka TSUCHIDA
  • Publication number: 20200070851
    Abstract: A control apparatus for a vehicle provided with an engine having a filter for removing particulate substances from an exhaust emission, drive wheels, and an automatic transmission, includes: a shift control portion configured to control a speed ratio of the automatic transmission; a drive power source control portion configured to control an output of the engine on the basis of the operator-required vehicle drive force; an engine output limiting portion configured to limit the output of the engine, preferentially to an output control of the engine by the drive power source control portion, while the filter is plugged with the particulate substances accumulated therein; and an upper limit setting portion configured to set an upper limit of the operator-required vehicle drive force used by the shift control portion, on the basis of limitation of the output of the engine by the engine output limiting portion.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shunya KATO, Yasutaka TSUCHIDA, Kazuhiro IKETOMI
  • Patent number: 10539085
    Abstract: A pre-stoppage ignition control unit defines, as a stoppage transition air amount, an intake air amount of the engine with which the engine torque becomes the stoppage transition torque in a state in which an ignition timing of the engine is set to a predetermined self-sustaining operation ignition timing, defines, as an intermediate timing, a predetermined timing earlier than timing at which the intake air amount converges to the stoppage transition air amount during an execution period of the pre-stoppage self-sustaining operation control, sets the ignition timing of the engine in a period from the start of the pre-stoppage self-sustaining operation control to the intermediate timing to timing earlier than the self-sustaining operation ignition timing, and sets the ignition timing of the engine in the period after the intermediate timing to the self-sustaining operation ignition timing.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: January 21, 2020
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Yasutaka Tsuchida, Shunya Kato, Takuro Kumada
  • Publication number: 20190367005
    Abstract: In a hybrid vehicle, when the engine is started and caused to make a transition from a stopped state into an operating state, the control device performs an operation control of the rotary machine and an output control of the engine to increase the rotation speed of the engine so that the rotation speed reaches a target rotation speed after the transition of the engine into the operating state, determined by the shifting control, and during increasing the rotation speed, when suppression conditions further including a condition that a vehicle speed is equal to or lower than a predetermined vehicle speed, and a condition that an output request amount by a driver is smaller than a predetermined output request amount, are satisfied, the control device suppresses an increase rate of the rotation speed until a predetermined time elapses from an initiation of starting of the engine are not satisfied.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 5, 2019
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasutaka TSUCHIDA, Takahiro Kimura
  • Publication number: 20190101074
    Abstract: A pre-stoppage ignition control unit defines, as a stoppage transition air amount, an intake air amount of the engine with which the engine torque becomes the stoppage transition torque in a state in which an ignition timing of the engine is set to a predetermined self-sustaining operation ignition timing, defines, as an intermediate timing, a predetermined timing earlier than timing at which the intake air amount converges to the stoppage transition air amount during an execution period of the pre-stoppage self-sustaining operation control, sets the ignition timing of the engine in a period from the start of the pre-stoppage self-sustaining operation control to the intermediate timing to timing earlier than the self-sustaining operation ignition timing, and sets the ignition timing of the engine in the period after the intermediate timing to the self-sustaining operation ignition timing.
    Type: Application
    Filed: August 9, 2018
    Publication date: April 4, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Yasutaka TSUCHIDA, Shunya KATO, Takuro KUMADA
  • Publication number: 20190100214
    Abstract: A power control ECU controls electric power and engine power of a hybrid vehicle. The power control ECU includes a request driving force calculating portion that calculates a request driving force calculated in accordance with an accelerator operation amount, a travel driving force calculating portion that calculates a travel driving force as a value that belatedly follows the request driving force, and a dashpot control processing portion. The dashpot control processing portion sets a value of the request driving force as a value of a final request driving force used to calculate request engine power when a difference of the request driving force with respect to the travel driving force is less than a predetermined positive value, and sets a value that belatedly follows the request driving force when the difference is greater than or equal to the predetermined positive value.
    Type: Application
    Filed: August 23, 2018
    Publication date: April 4, 2019
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, AISIN AW CO., LTD.
    Inventors: Shunya KATO, Yasutaka TSUCHIDA, Kenji UCHIDA, Takuro KUMADA
  • Patent number: 9682696
    Abstract: In the process of cranking and starting an engine by a motor, until a predetermined condition is satisfied, i.e., until a rotation speed Ne of the engine is equal to or higher than a predetermined rotation speed Nstmg and a crank angle ?cr of the engine is in a predetermined range of ?st1 to ?st2, the motor is controlled to increase the torque of the motor from value 0 to a positive specified torque Tst1 and keep the torque of the motor at the specified torque Tst1 by a rate process using a rate value ?Tst1. When the predetermined condition is satisfied, a rate value ?Tst2 is set to increase with an increase in satisfaction time rotation speed Neset that denotes the rotation speed Ne of the engine on satisfaction of the predetermined condition. The motor is then controlled to decrease the torque of the motor from the specified torque Tst1 by a rate process using a rate value ?Tst2.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: June 20, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yasutaka Tsuchida
  • Publication number: 20160304081
    Abstract: In the process of stopping an engine, upon satisfaction of an increase start condition that rotation speed Ne of the engine becomes equal to or lower than a predetermined rotation speed Nref1, a rate value Rup is set to have an increasing tendency with a decrease in minimum torque Tspmin (with an increase as the absolute value). A rate process using the set rate value Rup is performed to increase a motoring torque Tsp (motor torque command) from the negative minimum torque Tspmin.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 20, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasutaka TSUCHIDA
  • Publication number: 20160244047
    Abstract: In the process of cranking and starting an engine by a motor, until a predetermined condition is satisfied, i.e., until a rotation speed Ne of the engine is equal to or higher than a predetermined rotation speed Nstmg and a crank angle ?cr of the engine is in a predetermined range of ?st1 to ?st2, the motor is controlled to increase the torque of the motor from value 0 to a positive specified torque Tst1 and keep the torque of the motor at the specified torque Tst1 by a rate process using a rate value ?Tst1. When the predetermined condition is satisfied, a rate value ?Tst2 is set to increase with an increase in satisfaction time rotation speed Neset that denotes the rotation speed Ne of the engine on satisfaction of the predetermined condition. The motor is then controlled to decrease the torque of the motor from the specified torque Tst1 by a rate process using a rate value ?Tst2.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasutaka TSUCHIDA