Patents by Inventor Yasuto Sumi

Yasuto Sumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160043199
    Abstract: According to a method of manufacturing a semiconductor device of embodiments, a first trench is formed in a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type is formed in the first trench by using an epitaxial growth method, a second trench is formed in the second semiconductor layer, the second trench having a smaller depth than the first trench, a third semiconductor layer of the second conductivity type is formed in the second trench by using the epitaxial growth method, a gate insulating film is formed on the third semiconductor layer, a gate electrode is formed on the gate insulating film, and a first semiconductor region of the first conductivity type is formed in the third semiconductor layer.
    Type: Application
    Filed: February 19, 2015
    Publication date: February 11, 2016
    Inventors: Yasuto Sumi, Hiroaki Yamashita
  • Patent number: 9136324
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: September 15, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiyoshi Kimura, Yasuto Sumi, Hiroshi Ohta, Hiroyuki Irifune
  • Patent number: 8907420
    Abstract: A power semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type formed on the first semiconductor layer and alternately arranged along at least one direction parallel to a surface of the first semiconductor layer; a first main electrode; a fourth semiconductor layer of the second conductivity type selectively formed in a surface of the second semiconductor layer and a surface of the third semiconductor layer; a fifth semiconductor layer of the first conductivity type selectively formed in a surface of the fourth semiconductor layer; a second main electrode; and a control electrode. At least one of the second and the third semiconductor layers has a dopant concentration profile along the one direction, the dopant concentration profile having a local minimum at a position except both ends thereof.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Masakatsu Takashita, Yasuto Sumi, Masaru Izumisawa, Hiroshi Ohta
  • Patent number: 8872261
    Abstract: A semiconductor device includes first, second, and third semiconductor layers each having multiple diffusion layers. The first direction widths of the first diffusion layers are the same. The amount of impurity within the first diffusion layers gradually increases from the bottom end towards the top end of the first semiconductor layer. The first direction widths of the second diffusion layers are the same. The amounts of impurity within the second diffusion layers are the same. The first direction widths of the third diffusion layers are narrower than the first direction widths of the first diffusion layers and the first direction widths of the second diffusion layers at the same level, and gradually become narrower from the bottom end towards the top end of the third semiconductor layer. The amount of impurity within the third diffusion layers are the same.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Irifune, Wataru Saito, Yasuto Sumi, Kiyoshi Kimura, Hiroshi Ohta, Junji Suzuki
  • Patent number: 8860144
    Abstract: In general, according to one embodiment, a power semiconductor device includes a first pillar region, a second pillar region, and an epitaxial layer of a first conductivity type on a first semiconductor layer. The first pillar region is composed of a plurality of first pillar layers of a second conductivity type and a plurality of second pillar layers of the first conductivity type alternately arranged along a first direction. The second pillar region is adjacent to the first pillar region along the first direction and includes a third pillar layer of the second conductivity type, a fourth pillar layer of the first conductivity type, and a fifth pillar layer of the second conductivity type in this order along the first direction. A plurality of second base layers of the second conductivity type electrically connected, respectively, onto the third pillar layer and the fifth pillar layer and spaced from each other.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune, Wataru Saito, Syotaro Ono
  • Publication number: 20140117445
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers.
    Type: Application
    Filed: December 23, 2013
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kiyoshi KIMURA, Yasuto SUMI, Hiroshi OHTA, Hiroyuki IRIFUNE
  • Patent number: 8680606
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer provided thereon, mutually separated columnar third semiconductor layers of a second conductivity type extending within the second semiconductor layer, island-like fourth semiconductor layers of the second conductivity type provided on the third semiconductor layers, fifth semiconductor layers of the first conductivity type, sixth semiconductor layers of the second conductivity type, a gate electrode, a first electrode, and a second electrode. The fifth semiconductor layers are selectively provided on the fourth semiconductor layers. The sixth semiconductor layer electrically connects two adjacent fourth semiconductor layers. The first electrode is in electrical connection with the first semiconductor. The second electrode is in electrical connection with the fourth semiconductor layers and the fifth semiconductor layers via the openings in the gate electrode.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune
  • Patent number: 8643056
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: February 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiyoshi Kimura, Yasuto Sumi, Hiroshi Ohta, Hiroyuki Irifune
  • Patent number: 8610210
    Abstract: According to one embodiment, a power semiconductor device includes a first semiconductor layer, and first, second and third semiconductor regions. The first semiconductor layer has a first conductivity type. The first semiconductor regions have a second conductivity type, and are formed with periodicity in a lateral direction in a second semiconductor layer of the first conductivity type. The second semiconductor layer is provided on a major surface of the first semiconductor layer in a device portion with a main current path formed in a vertical direction generally perpendicular to the major surface and in a terminal portion provided around the device portion. The second semiconductor region has the first conductivity type and is a portion of the second semiconductor layer sandwiched between adjacent ones of the first semiconductor regions. The third semiconductor regions have the second conductivity type and are provided below the first semiconductor regions in the terminal portion.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Wataru Sekine, Wataru Saito, Syotaro Ono, Munehisa Yabuzaki, Nana Hatano, Miho Watanabe
  • Publication number: 20130277763
    Abstract: In general, according to one embodiment, a power semiconductor device includes a first pillar region, a second pillar region, and an epitaxial layer of a first conductivity type on a first semiconductor layer. The first pillar region is composed of a plurality of first pillar layers of a second conductivity type and a plurality of second pillar layers of the first conductivity type alternately arranged along a first direction. The second pillar region is adjacent to the first pillar region along the first direction and includes a third pillar layer of the second conductivity type, a fourth pillar layer of the first conductivity type, and a fifth pillar layer of the second conductivity type in this order along the first direction. A plurality of second base layers of the second conductivity type electrically connected, respectively, onto the third pillar layer and the fifth pillar layer and spaced from each other.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Hiroshi OHTA, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune, Wataru Saito, Syotaro Ono
  • Patent number: 8487374
    Abstract: In general, according to one embodiment, a power semiconductor device includes a first pillar region, a second pillar region, and an epitaxial layer of a first conductivity type on a first semiconductor layer. The first pillar region is composed of a plurality of first pillar layers of a second conductivity type and a plurality of second pillar layers of the first conductivity type alternately arranged along a first direction. The second pillar region is adjacent to the first pillar region along the first direction and includes a third pillar layer of the second conductivity type, a fourth pillar layer of the first conductivity type, and a fifth pillar layer of the second conductivity type in this order along the first direction. A plurality of second base layers of the second conductivity type electrically connected, respectively, onto the third pillar layer and the fifth pillar layer and spaced from each other.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 16, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Ohta, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune, Wataru Saito, Syotaro Ono
  • Publication number: 20130093003
    Abstract: A semiconductor device includes first, second, and third semiconductor layers each having multiple diffusion layers. The first direction widths of the first diffusion layers are the same. The amount of impurity within the first diffusion layers gradually increases from the bottom end towards the top end of the first semiconductor layer. The first direction widths of the second diffusion layers are the same. The amounts of impurity within the second diffusion layers are the same. The first direction widths of the third diffusion layers are narrower than the first direction widths of the first diffusion layers and the first direction widths of the second diffusion layers at the same level, and gradually become narrower from the bottom end towards the top end of the third semiconductor layer. The amount of impurity within the third. diffusion layers are the same.
    Type: Application
    Filed: September 7, 2012
    Publication date: April 18, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroyuki IRIFUNE, Wataru SAITO, Yasuto SUMI, Kiyoshi KIMURA, Hiroshi OHTA, Junji SUZUKI
  • Publication number: 20130069158
    Abstract: A power semiconductor device includes a high resistance epitaxial layer having a first pillar region and a second pillar region as a drift layer. The first pillar region includes a plurality of first pillars of the first conductivity type and a plurality of second pillars of the second conductivity type disposed alternately along a first direction. The second pillar region is adjacent to the first pillar region along the first direction. The second pillar region includes a third pillar and a fourth pillar of a conductivity type opposite to a conductivity type of the third pillar. A net quantity of impurities in the third pillar is less than a net quantity of impurities in each of the plurality of first pillars. A net quantity of impurities in the fourth pillar is less than the net quantity of impurities in the third pillar.
    Type: Application
    Filed: March 20, 2012
    Publication date: March 21, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi OHTA, Yasuto Sumi, Kiyoshi Kimura, Junji Suzuki, Hiroyuki Irifune, Wataru Saito
  • Publication number: 20120241823
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer provided thereon, mutually separated columnar third semiconductor layers of a second conductivity type extending within the second semiconductor layer, island-like fourth semiconductor layers of the second conductivity type provided on the third semiconductor layers, fifth semiconductor layers of the first conductivity type, sixth semiconductor layers of the second conductivity type, a gate electrode, a first electrode, and a second electrode. The fifth semiconductor layers are selectively provided on the fourth semiconductor layers. The sixth semiconductor layer electrically connects two adjacent fourth semiconductor layers. The first electrode is in electrical connection with the first semiconductor. The second electrode is in electrical connection with the fourth semiconductor layers and the fifth semiconductor layers via the openings in the gate electrode.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: HIROSHI OHTA, YASUTO SUMI, KIYOSHI KIMURA, JUNJI SUZUKI, HIROYUKI IRIFUNE
  • Patent number: 8227854
    Abstract: A semiconductor device includes: a drift layer having a superjunction structure; a semiconductor base layer selectively formed in a part of one surface of the drift layer; a first RESURF layer formed around a region having the semiconductor base layer formed thereon; a second semiconductor RESURF layer of a conductivity type which is opposite to a conductivity type of the first semiconductor RESURF layer; a first main electrode connected to a first surface of the drift layer; and a second main electrode connected to a second surface of the drift layer. The first RESURF layer is connected to the semiconductor base layer. The second semiconductor RESURF layer is in contact with the first semiconductor RESURF layer.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: July 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Masakatsu Takashita, Yasuto Sumi, Masaru Izumisawa, Hiroshi Ohta
  • Publication number: 20120074491
    Abstract: In general, according to one embodiment, a power semiconductor device includes a first pillar region, a second pillar region, and an epitaxial layer of a first conductivity type on a first semiconductor layer. The first pillar region is composed of a plurality of first pillar layers of a second conductivity type and a plurality of second pillar layers of the first conductivity type alternately arranged along a first direction. The second pillar region is adjacent to the first pillar region along the first direction and includes a third pillar layer of the second conductivity type, a fourth pillar layer of the first conductivity type, and a fifth pillar layer of the second conductivity type in this order along the first direction. A plurality of second base layers of the second conductivity type electrically connected, respectively, onto the third pillar layer and the fifth pillar layer and spaced from each other.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 29, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroshi OHTA, Yasuto SUMI, Kiyoshi KIMURA, Junji SUZUKI, Hiroyuki IRIFUNE, Wataru SAITO, Syotaro ONO
  • Publication number: 20120061721
    Abstract: A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kiyoshi KIMURA, Yasuto SUMI, Hiroshi OHTA, Hiroyuki IRIFUNE
  • Publication number: 20110291181
    Abstract: According to one embodiment, a semiconductor device including a cell region and a terminal region includes a first semiconductor region of a first conductivity type, semiconductor pillars of the first and a second conductivity type, a second semiconductor region of the second conductivity type, and a third semiconductor region of the first conductivity type. The semiconductor pillars of the first and second conductivity type are and arranged alternately on the first semiconductor region. The second semiconductor region is provided on the semiconductor pillar of the second conductivity type. The third semiconductor region is provided on the second semiconductor region. A semiconductor pillar other than a semiconductor pillar most proximal to the terminal region is provided in a stripe configuration. The semiconductor pillar most proximal to the terminal region includes regions having a high and a low impurity concentration. The regions are provided alternately.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 1, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki IRIFUNE, Yasuto Sumi, Kiyoshi Kimura, Hiroshi Ohta
  • Patent number: 8030706
    Abstract: A semiconductor device according to an embodiment of the present invention includes a device part and a terminal part.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Watanabe, Masaru Izumisawa, Yasuto Sumi, Hiroshi Ohta, Wataru Sekine, Wataru Saito, Syotaro Ono, Nana Hatano
  • Publication number: 20110233656
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor layer of a first conductivity type, first semiconductor pillar regions of the first conductivity type and second semiconductor pillar regions of a second conductivity type, a semiconductor region of the first conductivity type, a base region of the second conductivity type, a source region, a first main electrode, a second main electrode and a control electrode. The second semiconductor pillar region includes a plurality of semiconductor regions of the second conductivity type. A difference is provided between peak values of impurity concentration profiles of an uppermost and a lowermost semiconductor regions of the plurality of semiconductor regions, and in the alternately arranging direction of the first and second semiconductor pillar regions, maximum width of the uppermost semiconductor region is generally equal to or narrower than maximum width of the lowermost semiconductor region.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 29, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi OHTA, Yasuto Sumi, Klyoshi Kimura