Patents by Inventor Yasutomo TAKAKUWA

Yasutomo TAKAKUWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11236428
    Abstract: To provide an electrolysis cell for producing an organic chemical hydride capable of advancing a reduction reaction in a cathode of an organic compound having an unsaturated bond with high current efficiency and a small electric power consumption unit.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: February 1, 2022
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Yoshinori Nishiki, Akihiro Kato, Akiyoshi Manabe
  • Patent number: 11035045
    Abstract: An organic hydride production apparatus that enables the reduction reaction at the cathode of an organic compound having an unsaturated bond to proceed at high current efficiency and at a low electric power consumption rate, and a method for producing an organic hydride that uses this production apparatus.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 15, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Yoshinori Nishiki, Akihiro Kato, Akiyoshi Manabe
  • Patent number: 10889903
    Abstract: An anode for oxygen evolution that operates at a small overpotential and in a stable manner, and can be used favorably in an organic chemical hydride electrolytic synthesis apparatus. An anode 10 for oxygen evolution that evolves oxygen in a sulfuric acid aqueous solution containing a substance to be hydrogenated dissolved at a concentration higher than 1 mg/L, wherein an anode substrate 10a is composed of a valve metal, and an anode catalyst layer 10b containing at least one oxide, nitride or carbide of iridium, and at least one oxide, nitride or carbide of at least one metal selected from the group consisting of elements belonging to groups 4, 5 and 13 of the periodic table is formed on the surface of the anode substrate 10a.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: January 12, 2021
    Assignees: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Awaludin Zaenal, Akihiro Kato
  • Patent number: 10202698
    Abstract: A device for producing an organic hydride 10 of an aspect of the present invention has an electrochemical cell provided with an anode 12 on a surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 on another surface of the electrolyte membrane 11. A gap is provided between the anode 12 and the electrolyte membrane 11. The anode 12 has a network structure with an aperture ratio of 30 to 70%, and has an electrical supply supporting material formed of an electronic conductor and the electrode catalyst held by the electrical supply supporting material.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: February 12, 2019
    Assignees: Yokohama National University, DE NORA PERMELEC LTD
    Inventors: Shigenori Mitsushima, Yasutomo Takakuwa, Yoshinori Nishiki, Akihiro Kato, Akiyoshi Manabe, Yasushi Sato, Kota Miyoshi, Kojiro Nakagawa, Shinji Oshima
  • Publication number: 20170321331
    Abstract: An anode for oxygen evolution that operates at a small overpotential and in a stable manner, and can be used favorably in an organic chemical hydride electrolytic synthesis apparatus. An anode 10 for oxygen evolution that evolves oxygen in a sulfuric acid aqueous solution containing a substance to be hydrogenated dissolved at a concentration higher than 1 mg/L, wherein an anode substrate 10a is composed of a valve metal, and an anode catalyst layer 10b containing at least one oxide, nitride or carbide of iridium, and at least one oxide, nitride or carbide of at least one metal selected from the group consisting of elements belonging to groups 4, 5 and 13 of the periodic table is formed on the surface of the anode substrate 10a.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 9, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori MITSUSHIMA, Yasutomo TAKAKUWA, Awaludin ZAENAL, Akihiro KATO
  • Publication number: 20170314145
    Abstract: An organic hydride production apparatus that enables the reduction reaction at the cathode of an organic compound having an unsaturated bond to proceed at high current efficiency and at a low electric power consumption rate, and a method for producing an organic hydride that uses this production apparatus.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 2, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, DE NORA PERMELEC LTD.
    Inventors: Shigenori MITSUSHIMA, Yasutomo TAKAKUWA, Yoshinori NISHIKI, Akihiro KATO, Akiyoshi MANABE
  • Publication number: 20170292198
    Abstract: To provide an electrolysis cell for producing an organic chemical hydride capable of advancing a reduction reaction in a cathode of an organic compound having an unsaturated bond with high current efficiency and a small electric power consumption unit.
    Type: Application
    Filed: September 18, 2015
    Publication date: October 12, 2017
    Applicants: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, De Nora Permelec Ltd.
    Inventors: Shigenori MITSUSHIMA, Yasutomo TAKAKUWA, Yoshinori NISHIKI, Akihiro KATO, Akiyoshi MANABE
  • Publication number: 20170130344
    Abstract: A device for producing an organic hydride 10 of an aspect of the present invention has an electrochemical cell provided with an anode 12 on a surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 on another surface of the electrolyte membrane 11. A gap is provided between the anode 12 and the electrolyte membrane 11. The anode 12 has a network structure with an aperture ratio of 30 to 70%, and has an electrical supply supporting material formed of an electronic conductor and the electrode catalyst held by the electrical supply supporting material.
    Type: Application
    Filed: March 24, 2015
    Publication date: May 11, 2017
    Inventors: Shigenori MITSUSHIMA, Yasutomo TAKAKUWA, Yoshinori NISHIKI, Akihiro KATO, Akiyoshi MANABE, Yasushi SATO, Kota MIYOSHI, Kojiro NAKAGAWA, Shinji OSHIMA