Patents by Inventor Yasutoshi Kunitake

Yasutoshi Kunitake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7094295
    Abstract: A method of manufacturing a ferritic stainless steel sheet having good workability with less anisotropy. The steps include providing a ferritic stainless steel comprising C up to about 0.03 mass %, N up to about 0.03 mass %, Si up to about 2.0 mass %, Mn up to about 2.0 mass %, Ni up to about 0.6 mass %, Cr about 9–35 mass %, Nb about 0.15–0.80 mass % and the balance being Fe except inevitable impurities; precipitation-heating said stainless steel at a temperature in a range of 700–850° C. for a time period not longer than 25 hours; and finish-annealing said stainless steel at a temperature in a range of 900–1100° C. for a time period not longer than 1 minute.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: August 22, 2006
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Publication number: 20040140023
    Abstract: A ferritic stainless steel sheet, which is press-formed to a product shape without such dimensional defects as spring-back or torsion, has an alloying composition consisting of C up to 0.10%, Si up to 1.0%, Mn up to 1.0%, P up to 0.050%, S up to 0.020%, Ni up to 2.0%, 8.0-22.0% of Cr, N up to 0.05%, optionally one or more of Al up to 0.10%, Mo up to 1.0%, Cu up to 1.0%, 0.010-0.50% of Ti, 0.010-0.50% of Nb, 0.010-0.30% of V, 0.010-0.30% of Zr and 0.0010-0.0100% of B, and the balance being essentially Fe with the provision that a value-FM defined by the formula (1) is adjusted to 0 or less. Its mechanical properties are controlled to a plane anisotropic degree (rmax−rmin) of Lankford value (r) ≦0.80 and an anisotropic degree (&sgr;max−&sgr;min) of 0.2%-yield strength ≦20 N/mm2. The stainless steel sheet is manufactured by hot-rolling a stainless steel having the specified composition and then batch-annealing the hot-rolled steel sheet 1-24 hours at 700-800° C.
    Type: Application
    Filed: November 6, 2003
    Publication date: July 22, 2004
    Inventors: Kouki Tomimura, Hiroshi Fujimoto, Kenichi Morimoto, Yasutoshi Kunitake, Naoto Hiramatsu
  • Publication number: 20040084116
    Abstract: A method of manufacturing a ferritic stainless steel sheet having good workability with less anisotropy. The steps include providing a ferritic stainless steel comprising C up to about 0.03 mass %, N up to about 0.03 mass %, Si up to about 2.0 mass %, Mn up to about 2.0 mass %, Ni up to about 0.6 mass %, Cr about 9-35 mass %, Nb about 0.15-0.80 mass % and the balance being Fe except inevitable impurities; precipitation-heating said stainless steel at a temperature in a range of 700-850° C. for a time period not longer than 25 hours; and finish-annealing said stainless steel at a temperature in a range of 900-1100° C. for a time period not longer than 1 minute.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Patent number: 6673166
    Abstract: The newly proposed ferritic stainless steel sheet consists of C up to 0.03 mass %, N up to 0.03 mass %, Si up to 2.0 mass %, Mn up to 2.0 mass %, Ni up to 0.6 mass %, 9-35 mass % Cr, 0.15-0.80 mass % Nb, optionally one or more of Ti up to 0.5 mass %, Mo up to 3.0 mass %, Cu up to 2.0 mass % and Al up to 6.0 mass %, and the balance being Fe except inevitable impurities, comprises metallurgical structure involving precipitates of 2 &mgr;m or less in particle size at a ratio not more than 0.5 mass % and has crystalline orientation on a rolled surface at ¼ depth of thickness with Integrated Density defined by the formula (a) not less than 1.2. The ferritic stainless steel sheet is manufactured by 25 hours or shorter precipitation-treatment at 700-850° C. in prior to 1 minute or shorter finish-annealing at 900-1100° C. Integrated Intensity is made greater than 2.0 by controlling particle size of precipitates not more than 0.5 &mgr;m, so as to realize good workability with less in-plane anisotropy.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 6, 2004
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Publication number: 20020117239
    Abstract: The newly proposed ferritic stainless steel sheet consists of C up to 0.03 mass %, N up to 0.03 mass %, Si up to 2.0 mass %, Mn up to 2.0 mass %, Ni up to 0.6 mass %, 9-35 mass % Cr, 0.15-0.80 mass % Nb, optionally one or more of Ti up to 0.5 mass %, Mo up to 3.0 mass %, Cu up to 2.0 mass % and Al up to 6.0 mass %, and the balance being Fe except inevitable impurities, comprises metallurgical structure involving precipitates of 2 &mgr;m or less in particle size at a ratio not more than 0.5 mass % and has crystalline orientation on a rolled surface at ¼ depth of thickness with Integrated Density defined by the formula (a) not less than 1.2. The ferritic stainless steel sheet is manufactured by 25 hours or shorter precipitation-treatment at 700-850 ° C in prior to 1 minute or shorter finish-annealing at 900-1100 ° C. Integrated Intensity is made greater than 2.0 by controlling particle size of precipitates not more than 0.5 &mgr;m, so as to realize good workability with less in-plane anisotropy.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 29, 2002
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita