Patents by Inventor Yasuyoshi Miyaji

Yasuyoshi Miyaji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10138565
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: November 27, 2018
    Assignee: TruTag Technologies, Inc.
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20180323087
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: January 4, 2017
    Publication date: November 8, 2018
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Patent number: 9771662
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: September 26, 2017
    Assignee: OB REALTY, LLC
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20170243767
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: January 4, 2017
    Publication date: August 24, 2017
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20160186358
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: July 6, 2015
    Publication date: June 30, 2016
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20150308008
    Abstract: An apparatus for anodizing substrates immersed in an electrolyte solution. A substrate holder mounted in a storage tank includes a first support unit having first support elements for supporting, in a liquid-tight condition, portions of the substrates, and a second support unit attachable to and detachable from the first support unit and having second support elements for supporting, in a liquid-tight condition, the remaining portions of the substrates. The second support unit includes a first portion second support unit having support elements for supporting first portions of the remaining portions of the surfaces of the substrates, and a second portion second support unit having support elements for supporting second portions of the remaining portions of the surfaces of the substrates.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 29, 2015
    Inventors: Yasuyoshi MIYAJI, Noriyuki HAYASHI, Takamitsu INAHARA, Takao YONEHARA, Karl-Josef KRAMER, Subramanian TAMILMANI
  • Patent number: 9076642
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: July 7, 2015
    Assignee: Solexel, Inc.
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Patent number: 8992746
    Abstract: An apparatus for anodizing substrates immersed in an electrolyte solution. A substrate holder mounted in a storage tank includes a first support unit having first support elements for supporting, in a liquid-tight condition, only lower circumferential portions of the substrates, and a second support unit attachable to and detachable from the first support unit and having second support elements for supporting, in a liquid-tight condition, remaining circumferential portions of the substrates. A drive mechanism separates the first support unit and the second support unit when loading and unloading the substrates, and for connecting the first support unit and the second support unit after the substrates are placed in the substrate holder.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 31, 2015
    Assignees: Dainippon Screen Mfg. Co., Ltd., Solexel, Inc.
    Inventors: Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara, Takao Yonehara, Karl-Josef Kramer, Subramanian Tamilmani
  • Publication number: 20130180847
    Abstract: This disclosure enables high-productivity fabrication of porous semiconductor layers (made of single layer or multi-layer porous semiconductors such as porous silicon, comprising single porosity or multi-porosity layers). Some applications include fabrication of MEMS separation and sacrificial layers for die detachment and MEMS device fabrication, membrane formation and shallow trench isolation (STI) porous silicon (using porous silicon formation with an optimal porosity and its subsequent oxidation). Further, this disclosure is applicable to the general fields of photovoltaics, MEMS, including sensors and actuators, stand-alone, or integrated with integrated semiconductor microelectronics, semiconductor microelectronics chips and optoelectronics.
    Type: Application
    Filed: September 24, 2011
    Publication date: July 18, 2013
    Inventors: Takao Yonehara, Subramanian Tamilmani, Karl-Josef Kramer, Jay Ashjaee, Mehrdad M. Moslehi, Yasuyoshi Miyaji, Noriyuki Hayashi, Takamitsu Inahara
  • Publication number: 20120138455
    Abstract: An apparatus for anodizing substrates immersed in an electrolyte solution. A substrate holder mounted in a storage tank includes a first support unit having first support elements for supporting, in a liquid-tight condition, only lower circumferential portions of the substrates, and a second support unit attachable to and detachable from the first support unit and having second support elements for supporting, in a liquid-tight condition, remaining circumferential portions of the substrates. A drive mechanism separates the first support unit and the second support unit when loading and unloading the substrates, and for connecting the first support unit and the second support unit after the substrates are placed in the substrate holder.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Inventors: Yasuyoshi MIYAJI, Noriyuki HAYASHI, Takamitsu INAHARA, Takao YONEHARA, Karl-Josef KRAMER, Subramanian TAMILMANI
  • Patent number: 7764355
    Abstract: A stage body has a holding surface for placing a substrate thereon. A predetermined embossed configuration is formed by embossing on the holding surface, and thereafter an alumina film in an amorphous state is formed by an anodic oxidation process on the holding surface. The alumina film having an amorphous structure is dense and strong to provide high wear resistance and to substantially prevent separation electrification. This provides a substrate stage having high wear resistance and capable of preventing separation electrification.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: July 27, 2010
    Assignees: Tohoku University, Future Vision Inc.
    Inventors: Tadahiro Ohmi, Yusuke Muraoka, Yasuyoshi Miyaji, Yasushi Nagashima
  • Publication number: 20080024742
    Abstract: A stage body has a holding surface for placing a substrate thereon. A predetermined embossed configuration is formed by embossing on the holding surface, and thereafter an alumina film in an amorphous state is formed by an anodic oxidation process on the holding surface. The alumina film having an amorphous structure is dense and strong to provide high wear resistance and to substantially prevent separation electrification. This provides a substrate stage having high wear resistance and capable of preventing separation electrification.
    Type: Application
    Filed: July 18, 2007
    Publication date: January 31, 2008
    Inventors: Tadahiro Ohmi, Yusuke Muraoka, Yasuyoshi Miyaji, Yasushi Nagashima
  • Patent number: 5200025
    Abstract: A method of forming small through-holes in a thin metal layer including the steps of forming resist films having openings formed in accordance with a predetermined pattern; etching one or both sides of the thin metal plate and stopping etching before through-holes are formed; removing the overhang of the resist film by spraying high pressure fluid onto the etched side of the thin metal plate; covering the surface by an etch-resisting layer; forming through-holes by etching the side not covered; and stripping the etch-resisting layer and the resist film.
    Type: Grant
    Filed: September 19, 1991
    Date of Patent: April 6, 1993
    Assignee: Dainippon Screen Manufacturing Co. Ltd.
    Inventors: Keiji Toei, Yasuyoshi Miyaji, Masanobu Sato, Akihiro Inagaki, Seiji Tonogai, Koichi Omoto