Patents by Inventor Yasuyuki Irisawa

Yasuyuki Irisawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830167
    Abstract: The deterioration of an exhaust gas purification catalyst is suppressed as much as possible. An exhaust gas purification system for an internal combustion engine comprising: a throttle valve; a turbocharger; an exhaust gas purification catalyst; a bypass passage; a turbo bypass valve (TBV); and a controller. The controller is configured to carry out fuel cut processing and deterioration suppression control. In the deterioration suppression control, when a temperature of the exhaust gas purification catalyst is equal to or higher than a predetermined temperature in the course of the execution of the fuel cut processing, the degree of opening of the TBV becomes smaller, and the degree of opening of the throttle valve becomes larger, than when the temperature of the exhaust gas purification catalyst is lower than the predetermined temperature in the course of the execution of the fuel cut processing.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: November 10, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichi Kitaura, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10669916
    Abstract: In a construction in which a turbine and an exhaust gas purification catalyst are arranged close to each other, and in which an exhaust gas sensor is arranged in an exhaust passage between the turbine and the exhaust gas purification catalyst, the exhaust gas sensor is suppressed from getting wet with condensed water. In an exhaust system for an internal combustion engine, an exhaust gas sensor is arranged in a circumferential direction of a specific exhaust passage in a position except a range which is reached by a bypass exhaust gas carried away by a turbine swirling flow.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: June 2, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichi Kimura, Yasuyuki Irisawa, Takashi Tsunooka
  • Patent number: 10563599
    Abstract: A control system for an internal combustion engine includes an exhaust gas passage, an intake passage, a turbocharger, a bypass passage, a waste gate valve, a turbo bypass valve, a throttle valve, and an electronic control unit. The electronic control unit is configured to control the waste gate valve, the turbo bypass valve, and the throttle valve such that the order of execution of the throttle opening degree increase control and the turbo bypass valve opening degree increase control and the waste gate valve opening degree decrease control is changed depending on the engine load at a point in time when the operation state of the internal combustion engine belongs to the natural aspiration region when the predetermined acceleration request is present.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: February 18, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10557396
    Abstract: In an exhaust system for an internal combustion engine which is constructed such that when a degree of opening of a waste gate valve is equal to or larger than a predetermined degree of opening, the bypass exhaust gas flows so as to direct to a predetermined portion on the upstream side end face of the exhaust gas purification catalyst, and that the exhaust gas sensor is arranged in a specific passage, which is an exhaust passage between a turbine and the exhaust gas purification catalyst, the exhaust gas sensor is arranged to be away, a first distance or more in a direction orthogonal to an axial direction of the exhaust gas purification catalyst, from a region (scattering region B) in which the predetermined portion is virtually extended to a side of the specific passage along the axial direction of the exhaust gas purification catalyst.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: February 11, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koichi Kimura, Yasuyuki Irisawa
  • Patent number: 10415459
    Abstract: A warm-up system for an exhaust gas apparatus includes the exhaust gas apparatus having a turbocharger provided with a turbine, a first exhaust gas control catalyst provided downstream of the turbine, a bypass passage bypassing the turbine, and an adjustment unit adjusting a turbine inflow exhaust gas flow rate and an electronic control unit. The electronic control unit is configured to perform a warm-up control which warms the turbine by controlling the turbine inflow exhaust gas flow rate, by using the adjustment unit, to reach a flow rate higher than zero and lower than the post-warm-up flow rate when an operating state of the internal combustion engine remains constant, such that a warmed state of the first exhaust gas control catalyst is maintained after the first exhaust gas control catalyst is warmed.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: September 17, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10337422
    Abstract: A control apparatus for an internal combustion engine includes a turbocharger, a bypass passage, a waste gate valve, a turbo bypass valve, an air-fuel ratio sensor and an electronic control unit. The air-fuel ratio sensor is provided in an exhaust passage downstream of a merging point at which the bypass passage merges with the exhaust passage. The electronic control unit is configured to, when a predetermined acceleration request is established and a required opening degree of the turbo bypass valve is larger than a predetermined reference opening degree, execute air-fuel ratio control for changing an air-fuel ratio of exhaust gas from the internal combustion engine for a predetermined first period, and close the waste gate valve based on a convergence status of detected air-fuel ratio fluctuations. The detected air-fuel ratio fluctuations are fluctuations in air-fuel ratio that is detected by the air-fuel ratio sensor resulting from the air-fuel ratio control.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: July 2, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10221793
    Abstract: A controller for an internal combustion engine is configured, when the speed of combustion of a fuel in a cylinder changes as the property of the fuel injected from a fuel injection valve changes, to change a combustion limit excess air ratio that is a target value of a fuel injection amount feedforward control according to a first relationship that the combustion limit excess air ratio increases as the speed of combustion of the fuel in the cylinder increases. The controller is also configured, when the speed of combustion of the fuel in the cylinder changes as the property of the fuel injected from the fuel injection valve changes, to change the value of a combustion limit combustion speed parameter that is the target value of a fuel injection amount feedback control according to a second relationship that the speed of combustion of the fuel in the cylinder corresponding to a combustion limit increases as the speed of combustion of the fuel in the cylinder increases.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 5, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichiro Nogawa, Hiroaki Mizoguchi, Yasuyuki Irisawa, Shintaro Hotta, Masanori Hayashi
  • Publication number: 20190010854
    Abstract: In a construction in which a turbine and an exhaust gas purification catalyst are arranged close to each other, and in which an exhaust gas sensor is arranged in an exhaust passage between the turbine and the exhaust gas purification catalyst, the exhaust gas sensor is suppressed from getting wet with condensed water. In an exhaust system for an internal combustion engine, an exhaust gas sensor is arranged in a circumferential direction of a specific exhaust passage in a position except a range which is reached by a bypass exhaust gas carried away by a turbine swirling flow.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koichi KIMURA, Yasuyuki IRISAWA, Takashi TSUNOOKA
  • Publication number: 20190003366
    Abstract: In an exhaust system for an internal combustion engine which is constructed such that when a degree of opening of a waste gate valve is equal to or larger than a predetermined degree of opening, the bypass exhaust gas flows so as to direct to a predetermined portion on the upstream side end face of the exhaust gas purification catalyst, and that the exhaust gas sensor is arranged in a specific passage, which is an exhaust passage between a turbine and the exhaust gas purification catalyst, the exhaust gas sensor is arranged to be away, a first distance or more in a direction orthogonal to an axial direction of the exhaust gas purification catalyst, from a region (scattering region B) in which the predetermined portion is virtually extended to a side of the specific passage along the axial direction of the exhaust gas purification catalyst.
    Type: Application
    Filed: July 2, 2018
    Publication date: January 3, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koichi KIMURA, Yasuyuki Irisawa
  • Publication number: 20180334978
    Abstract: The deterioration of an exhaust gas purification catalyst is suppressed as ranch as possible. An exhaust gas purification system for an internal combustion engine comprising: a throttle valve; a turbocharger; an exhaust gas purification catalyst; a bypass passage; a turbo bypass valve (TBV); and a controller. The controller is configured to carry out fuel out processing and deterioration suppression control. In the deterioration suppression control, when a temperature of the exhaust gas purification catalyst is equal to or higher than a predetermined temperature in the course of the execution of the fuel cut processing, the degree of opening of the TBV becomes smaller, and the degree of opening of the throttle valve becomes larger, than when the temperature of the exhaust gas purification catalyst is lower than the predetermined temperature in the course of the execution of the fuel cut processing.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 22, 2018
    Inventors: Koichi Kitaura, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Patent number: 10087867
    Abstract: A control device for an internal combustion engine is provided. The internal combustion engine includes a cylinder, an in-cylinder pressure sensor, a fuel injection valve, and an alcohol concentration sensor. The control device includes an electronic control unit. The electronic control unit is configured to: carry out learning of fuel properties with the fuel injected from the fuel injection valve as a target; calculate a combustion speed parameter, showing a combustion speed, within the cylinder, of the fuel that is a learning target of the fuel properties, on a basis of the in-cylinder pressure; and determine that water is included in the fuel when the capacitance of the fuel detected by the alcohol concentration sensor is larger than a preset first threshold, and when the combustion speed of the fuel within the cylinder is smaller than a preset second threshold.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 2, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shintaro Hotta, Shinichiro Nogawa, Hiroaki Mizoguchi, Yasuyuki Irisawa, Masanori Hayashi
  • Patent number: 10047689
    Abstract: An exhaust gas purification system of an internal combustion engine according to the present invention includes: processing means for executing at least one of a process of increasing an air-fuel ratio of an air-fuel mixture burned in the internal combustion engine and a process of increasing EGR gas recirculated by an EGR apparatus, when increasing a NO2 proportion in exhaust gas; and control means for controlling the processing means so that an increase in the air-fuel ratio becomes larger, and an increase in the EGR gas becomes smaller when a temperature of the exhaust gas purification apparatus is high as compared to when the temperature of the exhaust gas purification apparatus is low.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: August 14, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shintaro Hotta, Yasuyuki Irisawa
  • Patent number: 10036307
    Abstract: An internal combustion engine includes an intake air temperature adjustment apparatus that adjusts the temperature of intake air, and a control apparatus that operates at least the intake air temperature adjustment apparatus. When the internal combustion engine operates in a stoichiometric EGR mode, the control apparatus operates the intake air temperature adjustment apparatus so that the temperature of intake air entering a combustion chamber enters a first temperature region. When the internal combustion engine operates in a lean mode, the control apparatus operates the intake air temperature adjustment apparatus so that the temperature of intake air entering a combustion chamber enters a second temperature region that is a lower temperature region than the first temperature region.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: July 31, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shintaro Hotta, Yasuyuki Irisawa, Hiroyuki Tanaka, Shinichiro Nogawa
  • Publication number: 20180179966
    Abstract: A control apparatus for an internal combustion engine includes a turbocharger, a bypass passage, a waste gate valve, a turbo bypass valve, an air-fuel ratio sensor and an electronic control unit. The air-fuel ratio sensor is provided in an exhaust passage downstream of a merging point at which the bypass passage merges with the exhaust passage. The electronic control unit is configured to, when a predetermined acceleration request is established and a required opening degree of the turbo bypass valve is larger than a predetermined reference opening degree, execute air-fuel ratio control for changing an air-fuel ratio of exhaust gas from the internal combustion engine for a predetermined first period, and close the waste gate valve based on a convergence status of detected air-fuel ratio fluctuations. The detected air-fuel ratio fluctuations are fluctuations in air-fuel ratio that is detected by the air-fuel ratio sensor resulting from the air-fuel ratio control.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 28, 2018
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Publication number: 20180128193
    Abstract: A control system for an internal combustion engine includes an exhaust gas passage, an intake passage, a turbocharger, a bypass passage, a waste gate valve, a turbo bypass valve, a throttle valve, and an electronic control unit. The electronic control unit is configured to control the waste gate valve, the turbo bypass valve, and the throttle valve such that the order of execution of the throttle opening degree increase control and the turbo bypass valve opening degree increase control and the waste gate valve opening degree decrease control is changed depending on the engine load at a point in time when the operation state of the internal combustion engine belongs to the natural aspiration region when the predetermined acceleration request is present.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 10, 2018
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Publication number: 20180119606
    Abstract: A warm-up system for an exhaust gas apparatus includes the exhaust gas apparatus having a turbocharger provided with a turbine, a first exhaust gas control catalyst provided downstream of the turbine, a bypass passage bypassing the turbine, and an adjustment unit adjusting a turbine inflow exhaust gas flow rate and an electronic control unit. The electronic control unit is configured to perform a warm-up control which warms the turbine by controlling the turbine inflow exhaust gas flow rate, by using the adjustment unit, to reach a flow rate higher than zero and lower than the post-warm-up flow rate when an operating state of the internal combustion engine remains constant, such that a warmed state of the first exhaust gas control catalyst is maintained after the first exhaust gas control catalyst is warmed.
    Type: Application
    Filed: October 10, 2017
    Publication date: May 3, 2018
    Inventors: Takanobu Hosoya, Yasuyuki Irisawa, Hirofumi Kubota, Takashi Tsunooka
  • Publication number: 20170356377
    Abstract: A controller for an internal combustion engine is configured, when the speed of combustion of a fuel in a cylinder changes as the property of the fuel injected from a fuel injection valve changes, to change a combustion limit excess air ratio that is a target value of a fuel injection amount feedforward control according to a first relationship that the combustion limit excess air ratio increases as the speed of combustion of the fuel in the cylinder increases. The controller is also configured, when the speed of combustion of the fuel in the cylinder changes as the property of the fuel injected from the fuel injection valve changes, to change the value of a combustion limit combustion speed parameter that is the target value of a fuel injection amount feedback control according to a second relationship that the speed of combustion of the fuel in the cylinder corresponding to a combustion limit increases as the speed of combustion of the fuel in the cylinder increases.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 14, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichiro NOGAWA, Hiroaki MIZOGUCHI, Yasuyuki IRISAWA, Shintaro HOTTA, Masanori HAYASHI
  • Publication number: 20170356379
    Abstract: A control device for an internal combustion engine is provided. The internal combustion engine includes a cylinder, an in-cylinder pressure sensor, a fuel injection valve, and an alcohol concentration sensor. The control device includes an electronic control unit. The electronic control unit is configured to: carry out learning of fuel properties with the fuel injected from the fuel injection valve as a target; calculate a combustion speed parameter, showing a combustion speed, within the cylinder, of the fuel that is a learning target of the fuel properties, on a basis of the in-cylinder pressure; and determine that water is included in the fuel when the capacitance of the fuel detected by the alcohol concentration sensor is larger than a preset first threshold, and when the combustion speed of the fuel within the cylinder is smaller than a preset second threshold.
    Type: Application
    Filed: June 7, 2017
    Publication date: December 14, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shintaro HOTTA, Shinichiro NOGAWA, Hiroaki MIZOGUCHI, Yasuyuki IRISAWA, Masanori HAYASHI
  • Publication number: 20170276059
    Abstract: An internal combustion engine includes an intake air temperature adjustment apparatus that adjusts the temperature of intake air, and a control apparatus that operates at least the intake air temperature adjustment apparatus. When the internal combustion engine operates in a stoichiometric EGR mode, the control apparatus operates the intake air temperature adjustment apparatus so that the temperature of intake air entering a combustion chamber enters a first temperature region. When the internal combustion engine operates in a lean mode, the control apparatus operates the intake air temperature adjustment apparatus so that the temperature of intake air entering a combustion chamber enters a second temperature region that is a lower temperature region than the first temperature region.
    Type: Application
    Filed: February 9, 2017
    Publication date: September 28, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shintaro HOTTA, Yasuyuki IRISAWA, Hiroyuki TANAKA, Shinichiro NOGAWA
  • Patent number: RE48658
    Abstract: A decrease in an NOx removal or reduction rate at the time of filter regeneration is suppressed. To this end, provision is made for an NOx selective reduction catalyst, a filter arranged at the upstream side of the NOx selective reduction catalyst, an NH3 generation catalyst arranged at the upstream side of the NOx selective reduction catalyst to generate NH3 when the air fuel ratio of an exhaust gas is equal to or less than a stoichiometric air fuel ratio, a regeneration unit to carry out regeneration of the filter, and a generation unit to make the air fuel ratio of the exhaust gas equal to or less than the stoichiometric air fuel ratio, thereby causing NH3 to be generated in the NH3 generation catalyst, wherein the regeneration unit inhibits the regeneration of the filter until the generation of NH3 by the generation unit is completed.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 27, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasuyuki Irisawa