Patents by Inventor Yasuyuki Iwasa

Yasuyuki Iwasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130281755
    Abstract: The catalyst for producing monocyclic aromatic hydrocarbons is for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon number from oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower. The catalyst contains crystalline aluminosilicate and a rare earth element, in which the amount of the rare earth element expressed in terms of the element is 0.1 to 10 mass % based on the crystalline aluminosilicate. In the production method of monocyclic aromatic hydrocarbons, oil feed stock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower is brought into contact with the catalyst for producing monocyclic aromatic hydrocarbons.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 24, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yasuyuki Iwasa, Ryoji Ida
  • Publication number: 20130281756
    Abstract: In the production method of monocyclic aromatic hydrocarbons, oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower is brought into contact with a catalyst for producing monocyclic aromatic hydrocarbons that includes a mixture containing a first catalyst which contains crystalline aluminosilicate containing gallium and/or zinc and phosphorus and a second catalyst which contains crystalline aluminosilicate containing phosphorus.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 24, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yasuyuki Iwasa, Ryoji Ida
  • Publication number: 20130267749
    Abstract: The catalyst for producing monocyclic aromatic hydrocarbons is for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon number from oil feedstock having a 10 volume % distillation temperature of 140° C. or higher and a 90 volume % distillation temperature of 380° C. or lower. The catalyst includes crystalline aluminosilicate, phosphorus, and a binder, and the amount of phosphorus is 0.1 to 10 mass % based on the total mass of the catalyst.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 10, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Yasuyuki Iwasa
  • Publication number: 20130184506
    Abstract: Disclosed is a method for producing aromatic hydrocarbons including a cracking reforming reaction step of bringing a feedstock having a 10 vol % distillation temperature of 140° C. or higher and a 90 vol % distillation temperature of 380° C. or lower, into contact with a catalyst for monocyclic aromatic hydrocarbon production containing a crystalline aluminosilicate to cause the feedstock to react with the catalyst, and thereby obtaining a product including monocyclic aromatic hydrocarbons having 6 to 8 carbon numbers and a heavy oil fraction having 9 or more carbon numbers; a step of separating the monocyclic aromatic hydrocarbons and the heavy oil fraction from the product obtained from the cracking reforming reaction step; a step of purifying the monocyclic aromatic hydrocarbons separated in the separating step, and collecting the hydrocarbons; and a step of separating naphthalene compounds from the heavy oil fraction separated in the separating step, and collecting the naphthalene compounds.
    Type: Application
    Filed: September 14, 2011
    Publication date: July 18, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Shinichiro Yanagawa, Ryoji Ida, Masahide Kobayashi, Yasuyuki Iwasa
  • Patent number: 8349762
    Abstract: The present invention provides a method for producing a catalyst for use in preferential carbon monoxide oxidation, which catalyst has a high preferential carbon monoxide oxidation activity and a high methanation activity with respect to the carbon monoxide contained in hydrogen gas, can thus stably reduce the carbon monoxide concentration to an extremely lower level and comprises porous inorganic oxide support particles and, on the basis of the mass thereof, 0.01 to 10 percent by mass of ruthenium and 0.01 to 1 percent by mass of platinum, loaded on the support. The method comprises (1) a step of loading 30 to 70 percent of the total amount of ruthenium to be loaded, on the support particles by a competitive adsorption method and (2) a step of loading the rest of the total amount of ruthenium to be loaded and the total amount of platinum to be loaded, on the ruthenium-loaded support particles produced in step (1) without using a competitive adsorption agent.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 8, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Publication number: 20120040823
    Abstract: The present invention provides a method for producing a catalyst for use in preferential carbon monoxide oxidation, which catalyst has a high preferential carbon monoxide oxidation activity and a high methanation activity with respect to the carbon monoxide contained in hydrogen gas, can thus stably reduce the carbon monoxide concentration to an extremely lower level and comprises porous inorganic oxide support particles and, on the basis of the mass thereof, 0.01 to 10 percent by mass of ruthenium and 0.01 to 1 percent by mass of platinum, loaded on the support. The method comprises (1) a step of loading 30 to 70 percent of the total amount of ruthenium to be loaded, on the support particles by a competitive adsorption method and (2) a step of loading the rest of the total amount of ruthenium to be loaded and the total amount of platinum to be loaded, on the ruthenium-loaded support particles produced in step (1) without using a competitive adsorption agent.
    Type: Application
    Filed: February 12, 2010
    Publication date: February 16, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Patent number: 8093178
    Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Nippon Oil Corporation
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto
  • Publication number: 20100086814
    Abstract: Disclosed in a catalyst which enables to reduce the carbon monoxide concentration in a product gas to 5 ppm by volume or less when carbon monoxide in a raw material gas containing hydrogen and carbon monoxide is selectively oxidized. The catalyst comprises a support of an inorganic oxide and ruthenium loaded thereon, and the relative loading depth X(Ru) of ruthenium in the radial direction in a redial cross-section of the catalyst satisfies the requirement defined by the following formula (1) X(Ru)?15??(1).
    Type: Application
    Filed: December 17, 2007
    Publication date: April 8, 2010
    Applicant: NIPPON OIL CORPORATION
    Inventors: Yasuyuki Iwasa, Takaya Matsumoto