Patents by Inventor Yatendra Sharma

Yatendra Sharma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092647
    Abstract: A method (10) for the processing of lithium containing brines, the method comprising the method steps of: (i) Passing a lithium containing brine (12) to a filtration step (14) to remove sulphates; (ii) Passing a product (16) of step (i) to a first ion exchange step (18) to remove divalent impurities; (iii) Passing a product (20) of step (ii) to a second ion exchange step (22) to remove boron impurities; (iv) Passing a product (24) of step (iii) to an electrolysis step (26) to produce lithium hydroxide (28); and (v) Passing a product (30) of step (iv) to a crystallisation step (32) that in turn provides a lithium hydroxide monohydrate product (34).
    Type: Application
    Filed: November 22, 2023
    Publication date: March 21, 2024
    Inventor: Yatendra Sharma
  • Patent number: 11932550
    Abstract: A method (10) for the processing of lithium containing brines, the method comprising the method steps of: (i) Passing a lithium containing brine (12) to a filtration step (14) to remove sulphates; (ii) Passing a product (16) of step (i) to a first ion exchange step (18) to remove divalent impurities; (iii) Passing a product (20) of step (ii) to a second ion exchange step (22) to remove boron impurities; (iv) Passing a product (24) of step (iii) to an electrolysis step (26) to produce lithium hydroxide (28); and (v) Passing a product (30) of step (iv) to a crystallisation step (32) that in turn provides a lithium hydroxide monohydrate product (34).
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: March 19, 2024
    Inventor: Yatendra Sharma
  • Publication number: 20220169521
    Abstract: A process (10) for the treatment of a lithium containing material (12), the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps, one of which is an HCl sparging step 58, thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution. An additional step in which the lithium hydroxide solution produced in step (iii) is carbonated by passing compressed carbon dioxide (88) through the solution, thereby producing a lithium carbonate precipitate, is also disclosed.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Inventor: Yatendra SHARMA
  • Patent number: 11286170
    Abstract: A process (10) for the treatment of a lithium containing material (12), the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps, one of which is an HCl sparging step 58, thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution. An additional step in which the lithium hydroxide solution produced in step (iii) is carbonated by passing compressed carbon dioxide (88) through the solution, thereby producing a lithium carbonate precipitate, is also disclosed.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: March 29, 2022
    Assignee: Reed Advanced Materials Pty Ltd
    Inventor: Yatendra Sharma
  • Publication number: 20210347650
    Abstract: A method (10) for the processing of lithium containing brines, the method comprising the method steps of: (i) Passing a lithium containing brine (12) to a filtration step (14) to remove sulphates; (ii) Passing a product (16) of step (i) to a first ion exchange step (18) to remove divalent impurities; (iii) Passing a product (20) of step (ii) to a second ion exchange step (22) to remove boron impurities; (iv) Passing a product (24) of step (iii) to an electrolysis step (26) to produce lithium hydroxide (28); and (v) Passing a product (30) of step (iv) to a crystallisation step (32) that in turn provides a lithium hydroxide monohydrate product (34).
    Type: Application
    Filed: September 20, 2019
    Publication date: November 11, 2021
    Inventor: Yatendra Sharma
  • Patent number: 10167531
    Abstract: A process (10) for the treatment of a lithium containing material, the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps (36) thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: January 1, 2019
    Assignee: Reed Advanced Materials Pty Ltd
    Inventor: Yatendra Sharma
  • Patent number: 9988279
    Abstract: A process (10) for the production of lithium hydroxide, the process comprising the steps of: (i) Causticising lithium chloride (12) with sodium hydroxide (16) to produce a lithium hydroxide product; (ii) Collecting the solids resulting from the causticisation of step (i) and filtering (22) same; (iii) The filtered solids from step (ii) are passed to a heating step (32) in which anhydrous lithium hydroxide is produced; (iv) Filtering (34) the anhydrous lithium hydroxide product of step (iii); and (v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 5, 2018
    Assignee: Reed Advanced Materials Pty Ltd
    Inventor: Yatendra Sharma
  • Publication number: 20180142325
    Abstract: A process (10) for the treatment of a lithium containing material, the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps (36) thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution.
    Type: Application
    Filed: January 19, 2018
    Publication date: May 24, 2018
    Inventor: Yatendra Sharma
  • Publication number: 20180016153
    Abstract: A process (10) for the treatment of a lithium containing material (12), the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps, one of which is an HCl sparging step 58, thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution. An additional step in which the lithium hydroxide solution produced in step (iii) is carbonated by passing compressed carbon dioxide (88) through the solution, thereby producing a lithium carbonate precipitate, is also disclosed.
    Type: Application
    Filed: October 30, 2015
    Publication date: January 18, 2018
    Inventor: Yatendra SHARMA
  • Publication number: 20170233261
    Abstract: A process (10) for the production of lithium hydroxide, the process comprising the steps of: (i) Causticising lithium chloride (12) with sodium hydroxide (16) to produce a lithium hydroxide product; (ii) Collecting the solids resulting from the causticisation of step (i) and filtering (22) same; (iii) The filtered solids from step (ii) are passed to a heating step (32) in which anhydrous lithium hydroxide is produced; (iv) Filtering (34) the anhydrous lithium hydroxide product of step (iii); and (v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.
    Type: Application
    Filed: December 17, 2014
    Publication date: August 17, 2017
    Inventor: Yatendra SHARMA
  • Publication number: 20150152523
    Abstract: A process (10) for the treatment of a lithium containing material, the process comprising the steps of: (i) Preparing a process solution from the lithium containing material (12); (ii) Passing the process solution from step (i) to a series of impurity removal steps (36) thereby providing a substantially purified lithium chloride solution; and (iii) Passing the purified lithium chloride solution of step (ii) to an electrolysis step (70) thereby producing a lithium hydroxide solution.
    Type: Application
    Filed: August 1, 2013
    Publication date: June 4, 2015
    Inventor: Yatendra Sharma
  • Patent number: 5164274
    Abstract: An alkaline manganese cell--which is generally a rechargeable cell, but which may also be a primary cell--is provided, having an anode composition where the anode comprises an admixture of amalgamated zinc particles, zinc oxide and metallic copper. The metallic copper is finely divided and has a large surface area, so that the copper is distributed throughout the anode and forms an electrically conductive, low resistance structure within the anode. The metallic matrix within the anode takes the appearance of a sponge, and provides for conductivity within the anode at all stages of charge and discharge of the cell. Especially in the anode of a secondary cell, the cell will exhibit an overcharge reserve because there is a sufficient amount of zinc oxide in the anode, and it will exhibit an over discharge reserve because of the presence of metallic copper in the anode.
    Type: Grant
    Filed: November 3, 1990
    Date of Patent: November 17, 1992
    Assignee: Battery Technologies Inc.
    Inventors: Karl V. Kordesch, Yatendra Sharma, Klaus Tomantschger