Patents by Inventor Yauh-Ching Liu

Yauh-Ching Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7485961
    Abstract: A method is disclosed for reducing the effects of buckling, also referred to as cracking or wrinkling in multilayer heterostructures. The present method involves forming a planarization layer superjacent a semiconductor substrate. A barrier film having a structural integrity is formed superjacent the planarization layer. A second layer is formed superjacent the barrier film. The substrate is heated sufficiently to cause the planarization layer to expand according to a first thermal coefficient of expansion, the second layer to expand according to a second thermal coefficient of expansion, and the structural integrity of the barrier film to be maintained. This results in the barrier film isolating the planarization layer from the second layer, thereby preventing the planarization layer and the second layer from interacting during the heating step.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: February 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Trung T. Doan, Randhir P. S. Thakur, Yauh-Ching Liu
  • Patent number: 6924522
    Abstract: A floating gate transistor is formed by simultaneously creating buried contact openings on both EEPROM transistor gates and DRAM access transistor source/drain diffusions. Conventional DRAM process steps are used to form cell storage capacitors in all the buried contact openings, including buried contact openings on EEPROM transistor gates. An EEPROM transistor gate and its associated cell storage capacitor bottom plate together forms a floating gate completely surrounded by insulating material. The top cell storage capacitor plate on an EEPROM transistor is used as a control gate to apply programming voltages to the EEPROM transistor. Reading, writing, and erasing the EEPROM element are analogous to conventional floating-gate tunneling oxide (FLOTOX) EEPROM devices. In this way, existing DRAM process steps are used to implement an EEPROM floating gate transistor nonvolatile memory element.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: August 2, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Manny K. F. Ma, Yauh-Ching Liu
  • Patent number: 6806551
    Abstract: Fuses, and optionally metal pads, are formed over a layer of low k dielectric material structure having first openings lined with conductive barrier material and filled to form metal interconnects in the upper surface of the low k dielectric material. A dielectric layer is formed over the low k dielectric material and over the metal interconnects, and patterned to form second openings therein communicating with the metal interconnects. A conductive barrier layer is formed over this dielectric layer in contact with the metal interconnects, and patterned to form fuse portions between some of the metal interconnects, and a liner over one or more of the metal interconnects. A dielectric layer is then formed over the patterned conductive barrier layer to form a window above each fuse, and patterned to form openings over at least some of the conductive barrier liners filled with metal to form metal pads.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 19, 2004
    Assignee: LSI Logic Corporation
    Inventors: Yauh-Ching Liu, Ruggero Castagnetti, Ramnath Venkatraman
  • Publication number: 20040188840
    Abstract: A method is disclosed for reducing the effects of buckling, also referred to as cracking or wrinkling in multilayer heterostructures. The present method involves forming a planarization layer superjacent a semiconductor substrate. A barrier film having a structural integrity is formed superjacent the planarization layer. A second layer is formed superjacent the barrier film. The substrate is heated sufficiently to cause the planarization layer to expand according to a first thermal coefficient of expansion, the second layer to expand according to a second thermal coefficient of expansion, and the structural integrity of the barrier film to be maintained. This results in the barrier film isolating the planarization layer from the second layer, thereby preventing the planarization layer and the second layer from interacting during the heating step.
    Type: Application
    Filed: February 9, 2004
    Publication date: September 30, 2004
    Inventors: Trung T. Doan, Randhir P. S. Thakur, Yauh-Ching Liu
  • Patent number: 6794698
    Abstract: A DRAM cell capacitor is described. Capacitor formation and cell isolation methods are integrated by using existing isolation trench sidewalls to form DRAM capacitors. A doped silicon substrate adjacent to the vertical sidewalls of the isolation trench provides one DRAM cell capacitor plate. The DRAM capacitor also contains a dielectric material that partially covers the interior vertical sidewalls of the isolation trench. A conductive layer covering the dielectric material on the vertical sidewalls of the isolation trench forms the second capacitor plate and completes the DRAM capacitor.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: September 21, 2004
    Assignee: LSI Logic Corporation
    Inventors: Dung-Ching Perng, Yauh-Ching Liu
  • Patent number: 6770947
    Abstract: A severable horizontal portion of a fuse link is formed relative to a vertically configured structure in an IC to promote separation of the severable portion upon applying energy from a laser beam. The vertically configured structure may be a reduced vertical thickness of the severable portion, an elevated lower surface of the severable portion above adjoining portions of the fuse link, a protrusion which supports the severable portion at a height greater than a height of the adjoining portions of the fuse link, flowing the melted severable portion down sloped surfaces away from a break point, and a propellent material beneath the severable portion which explodes to ablate the severable portion.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: August 3, 2004
    Assignee: LSI Logic Corporation
    Inventors: Gary K. Giust, Ruggero Castagnetti, Yauh-Ching Liu, Shiva Ramesh
  • Patent number: 6690044
    Abstract: A multilayer heterostructure is provided a planarization layer superjacent a semiconductor substrate. The planarization layer comprises tungsten, titanium, tantalum, copper, aluminum, single crystal silicon, polycrystalline silicon, amorphous silicon, borophosphosilicate glass (“BPSG”) or tetraethylorthosilicate (“TEOS”). A barrier film having a structural integrity is superjacent the planarization layer. A second layer is formed superjacent the barrier film. The second layer comprises tungsten, titanium, tantalum, copper, aluminum, borophosphosilicate glass (“BPSG”) or tetraethylorthosilicate (“TEOS”). Heating causes the planarization layer to expand according to a first thermal coefficient of expansion, the second layer to expand according to a second thermal coefficient of expansion, and the structural integrity of the barrier film to be maintained.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Trung T. Doan, Randhir P. S. Thakur, Yauh-Ching Liu
  • Patent number: 6627968
    Abstract: A process for forming a capacitive structure and a fuse structure in an integrated circuit device includes forming a first capacitor plate and first and second fuse electrodes in a first dielectric layer of the device. In a second dielectric layer overlying the first dielectric layer, a capacitor dielectric section overlying the first capacitor plate, and a fuse barrier section overlying and between the first and second fuse electrodes are formed simultaneously. In a conductive layer overlying the second dielectric layer, a second capacitor plate overlying the capacitor dielectric section, and a fuse overlying the fuse barrier section and contacting the first and second fuse electrodes are formed simultaneously. The capacitor dielectric section and the fuse barrier section may be defined simultaneously by selectively removing portions of the first dielectric layer during a single etching step.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: September 30, 2003
    Assignee: LSI Logic Corporation
    Inventors: Chuan-Cheng Cheng, Yauh-Ching Liu
  • Publication number: 20030164532
    Abstract: Fuses, and optionally metal pads, are formed over a layer of low k dielectric material structure having first openings lined with conductive barrier material and filled to form metal interconnects in the upper surface of the low k dielectric material. A dielectric layer is formed over the low k dielectric material and over the metal interconnects, and patterned to form second openings therein communicating with the metal interconnects. A conductive barrier layer is formed over this dielectric layer in contact with the metal interconnects, and patterned to form fuse portions between some of the metal interconnects, and a liner over one or more of the metal interconnects. A dielectric layer is then formed over the patterned conductive barrier layer to form a window above each fuse, and patterned to form openings over at least some of the conductive barrier liners filled with metal to form metal pads.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 4, 2003
    Inventors: Yauh-Ching Liu, Ruggero Castagnetti, Ramnath Venkatraman
  • Publication number: 20030155629
    Abstract: A severable horizontal portion of a fuse link is formed relative to a vertically configured structure in an IC to promote separation of the severable portion upon applying energy from a laser beam. The vertically configured structure may be a reduced vertical thickness of the severable portion, an elevated lower surface of the severable portion above adjoining portions of the fuse link, a protrusion which supports the severable portion at a height greater than a height of the adjoining portions of the fuse link, flowing the melted severable portion down sloped surfaces away from a break point, and a propellent material beneath the severable portion which explodes to ablate the severable portion.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 21, 2003
    Inventors: Gary K. Giust, Ruggero Castagnetti, Yauh-Ching Liu, Shiva Ramesh
  • Patent number: 6566171
    Abstract: Fuses, and optionally metal pads, are formed over a layer of low k dielectric material structure having first openings lined with conductive barrier material and filled to form metal interconnects in the upper surface of the low k dielectric material. A dielectric layer is formed over the low k dielectric material and over the metal interconnects, and patterned to form second openings therein communicating with the metal interconnects. A conductive barrier layer is formed over this dielectric layer in contact with the metal interconnects, and patterned to form fuse portions between some of the metal interconnects, and a liner over one or more of the metal interconnects. A dielectric layer is then formed over the patterned conductive barrier layer to form a window above each fuse, and patterned to form openings over at least some of the conductive barrier liners filled with metal to form metal pads.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: May 20, 2003
    Assignee: LSI Logic Corporation
    Inventors: Yauh-Ching Liu, Ruggero Castagnetti, Ramnath Venkatraman
  • Patent number: 6566730
    Abstract: A severable horizontal portion of a fuse link is formed relative to a vertically configured structure in an IC to promote separation of the severable portion upon applying energy from a laser beam. The vertically configured structure may be a reduced vertical thickness of the severable portion, an elevated lower surface of the severable portion above adjoining portions of the fuse link, a protrusion which supports the severable portion at a height greater than a height of the adjoining portions of the fuse link, flowing the melted severable portion down sloped surfaces away from a break point, and a propellent material beneath the severable portion which explodes to ablate the severable portion.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 20, 2003
    Assignee: LSI Logic Corporation
    Inventors: Gary K. Giust, Ruggero Castagnetti, Yauh-Ching Liu, Shiva Ramesh
  • Publication number: 20030060009
    Abstract: A process for forming a capacitive structure and a fuse structure in an integrated circuit device includes forming a first capacitor plate and first and second fuse electrodes in a first dielectric layer of the device. In a second dielectric layer overlying the first dielectric layer, a capacitor dielectric section overlying the first capacitor plate, and a fuse barrier section overlying and between the first and second fuse electrodes are formed simultaneously. In a conductive layer overlying the second dielectric layer, a second capacitor plate overlying the capacitor dielectric section, and a fuse overlying the fuse barrier section and contacting the first and second fuse electrodes are formed simultaneously. The capacitor dielectric section and the fuse barrier section may be defined simultaneously by selectively removing portions of the first dielectric layer during a single etching step.
    Type: Application
    Filed: October 25, 2002
    Publication date: March 27, 2003
    Applicant: LSI Logic Corporation
    Inventors: Chuan-Cheng Cheng, Yauh-Ching Liu
  • Patent number: 6495426
    Abstract: A process for forming a capacitive structure and a fuse structure in an integrated circuit device includes forming a first capacitor plate and first and second fuse electrodes in a first dielectric layer of the device. In a second dielectric layer overlying the first dielectric layer, a capacitor dielectric section overlying the first capacitor plate, and a fuse barrier section overlying and between the first and second fuse electrodes are formed simultaneously. In a conductive layer overlying the second dielectric layer, a second capacitor plate overlying the capacitor dielectric section, and a fuse overlying the fuse barrier section and contacting the first and second fuse electrodes are formed simultaneously. The capacitor dielectric section and the fuse barrier section may be defined simultaneously by selectively removing portions of the first dielectric layer during a single etching step.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: December 17, 2002
    Assignee: LSI Logic Corporation
    Inventors: Chuan-Cheng Cheng, Yauh-Ching Liu
  • Patent number: 6472715
    Abstract: An integrated circuit structures such as an SRAM construction wherein the soft error rate is reduced comprises an integrated circuit structure formed in a semiconductor substrate, wherein at least one N channel transistor is built in a P well adjacent to one or more deep N wells connected to the high voltage supply and the deep N wells extend from the surface of the substrate down into the substrate to a depth at least equal to that depth at which alpha particle-generated electron-hole pairs can effectively cause a soft error in the SRAM cell. For a 0.25 &mgr;m SRAM design having one or more N wells of a conventional depth not exceeding about 0.5 &mgr;m, the depth at which alpha particle-generated electron-hole pairs can effectively cause a soft error in the SRAM cell is from 1 to 3 &mgr;m. The deep N well of the 0.25 &mgr;m SRAM design, therefore, extends down from the substrate surface a distance of at least about 1 &mgr;m, and preferably at least about 2 &mgr;m.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: October 29, 2002
    Assignee: LSI Logic Corporation
    Inventors: Yauh-Ching Liu, Helmut Puchner, Ruggero Castagnetti, Weiran Kong, Lee Phan, Franklin Duan, Steven Michael Peterson
  • Publication number: 20020135005
    Abstract: A floating gate transistor is formed by simultaneously creating buried contact openings on both EEPROM transistor gates and DRAM access transistor source/drain diffusions. Conventional DRAM process steps are used to form cell storage capacitors in all the buried contact openings, including buried contact openings on EEPROM transistor gates. An EEPROM transistor gate and its associated cell storage capacitor bottom plate together forms a floating gate completely surrounded by insulating material. The top cell storage capacitor plate on an EEPROM transistor is used as a control gate to apply programming voltages to the EEPROM transistor. Reading, writing, and erasing the EEPROM element are analogous to conventional floating-gate tunneling oxide (FLOTOX) EEPROM devices. In this way, existing DRAM process steps are used to implement an EEPROM floating gate transistor nonvolatile memory element.
    Type: Application
    Filed: May 21, 2002
    Publication date: September 26, 2002
    Applicant: Micron Technology, Inc.
    Inventors: Manny K. F. Ma, Yauh-Ching Liu
  • Patent number: 6442061
    Abstract: A method of forming a memory cell according to the present invention. A first pass gate transistor is formed of a first transistor type. The first pass gate transistor has a gate oxide with a first thickness. The source of the first pass gate transistor is electrically connected to a first bit line, and the drain of the first pass gate transistor is electrically connected to a first state node. The gate of the first pass gate transistor is electrically connected to a memory cell enable line. A second pass gate transistor is also formed of the first transistor type. The second pass gate transistor also has a gate oxide with the first thickness. The source of the second pass gate transistor is electrically connected to a second bit line, and the drain of the second pass gate transistor is electrically connected to a second state node. The gate of the second pass gate transistor is electrically connected to the memory cell enable line. A first state node transistor is also formed of the first transistor type.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: August 27, 2002
    Assignee: LSI Logic Corporation
    Inventors: Weiran Kong, Gary K. Giust, Ramnath Venkatraman, Yauh-Ching Liu, Franklin Duan, Ruggero Castagnetti, Steven M. Peterson, Myron J. Buer, Minh Tien Nguyen
  • Patent number: 6413848
    Abstract: Provided are a self-aligned semiconductor fuse structure, a method of making such a fuse structure, and apparatuses incorporating such a fuse structure. The fuse break point, that point at which the electrical link of which the fuse is part is severed by a laser beam, is self-aligned by the use of photolithographically patterned anti-reflective dielectric coatings. The self-alignment allows the size location of the break point to be less sensitive to the laser beam size and alignment. This has several advantages including allowing photolithographic control and effective size reduction of the laser spot irradiating the fuse material and surrounding structure. This permits reduced fuse pitch, increasing density and the efficiency of use of chip area, and results in reduced thermal exposure, which causes less damage to chip. In addition, laser alignment is less critical and therefore less timely, which increases throughput in fabrication.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: July 2, 2002
    Assignee: LSI Logic Corporation
    Inventors: Gary K. Giust, Ruggero Castagnetti, Yauh-Ching Liu, Subramanian Ramesh
  • Patent number: 6391755
    Abstract: A floating gate transistor is formed by simultaneously creating buried contact openings on both EEPROM transistor gates and DRAM access transistor source/drain diffusions. Conventional DRAM process steps are used to form cell storage capacitors in all the buried contact openings, including buried contact openings on EEPROM transistor gates. An EEPROM transistor gate and its associated cell storage capacitor bottom plate together forms a floating gate completely surrounded by insulating material. The top cell storage capacitor plate on an EEPROM transistor is used as a control gate to apply programming voltages to the EEPROM transistor. Reading, writing, and erasing the EEPROM element are analogous to conventional floating-gate tunneling oxide (FLOTOX) EEPROM devices. In this way, existing DRAM process steps are used to implement an EEPROM floating gate transistor nonvolatile memory element.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: May 21, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Manny K. F. Ma, Yauh-Ching Liu
  • Patent number: 6369418
    Abstract: A DRAM cell capacitor is described. Capacitor formation and cell isolation methods are integrated by using support sidewalls to form vertical DRAM capacitors. Doped polysilicon adjacent to the vertical sidewalls of the support provides one DRAM cell capacitor plate. The DRAM capacitor also contains a dielectric material that contacts and partially covers the doped polysilicon capacitor plate. Doped epitaxial silicon that contacts a portion of the dielectric forms the second capacitor plate and completes the DRAM capacitor.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: April 9, 2002
    Assignee: LSI Logic Corporation
    Inventors: Dung-Ching Perng, Yauh-Ching Liu