Patents by Inventor Yayoi Okui

Yayoi Okui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8652356
    Abstract: The blue phosphor of the present invention is represented by the general formula aBaO.bSrO.(1?a?b)EuO.cMgO.dAlO3/2.eWO3, where 0.70?a?0.95, 0?b?0.15, 0.95?c?1.15, 9.00?d?11.00, 0.001?e?0.200, and a+b?0.97 are satisfied. In the blue phosphor of the present invention, two peaks whose tops are located in a range of diffraction angle 2?=13.0 to 13.6 degrees and one peak whose top is located in a range of diffraction angle 2?=14.6 to 14.8 degrees are present in an X-ray diffraction pattern obtained by measurement on the blue phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: February 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi
  • Patent number: 8361347
    Abstract: The blue phosphor of the present invention includes ZrO2 and a metal aluminate that is represented by the general formula aBaO.bSrO.(1?a?b)EuO.cMgO.dAlO3/2.eWO3, where 0.70?a?0.95, 0?b?0.15, 0.95?c?1.15, 9.00?d?11.00, 0.001?e?0.200, and a+b?0.97 are satisfied. This blue phosphor has a ZrO2 content of 0.01 to 1.00% by weight. In the blue phosphor of the present invention, two peaks whose tops are located in a range of diffraction angle 2?=13.0 to 13.6 degrees are present in an X-ray diffraction pattern obtained by measurement on the blue phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: January 29, 2013
    Assignee: Panasonic Corporation
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi
  • Publication number: 20130020927
    Abstract: There is provided a PDP including a front substrate and a rear substrate. The front substrate and the rear substrate are disposed via discharge spaces. The discharge spaces are filled with a discharge gas. In the discharge spaces or in a space permeable to the discharge spaces, a copper-ion-exchanged zeolite adsorbent is disposed which is in an activated state.
    Type: Application
    Filed: May 13, 2011
    Publication date: January 24, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yayoi Okui, Masahiro Sakai, Yusuke Fukui
  • Publication number: 20130015762
    Abstract: There is provided a PDP in which the structure of the periphery of a protective film is improved, excellent secondary electron emission property is exhibited, and improved efficiency and increased life can be expected. There is further provided a PDP in which occurrence of a discharge delay at the time of driving is prevented, and exhibition of high quality image display performance can be expected even in a high definition PDP that is driven at a high speed. Specifically, a crystalline film containing Sr in CeO2 in a concentration of 11.8 mol % to 49.4 mol % inclusive is formed on the surface of dielectric layer on the discharge space side as surface layer (protective film) having a thickness of about 1 ?m. High ? fine particles having secondary electron emission property higher than those of protective film are arranged thereon.
    Type: Application
    Filed: May 2, 2011
    Publication date: January 17, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Yusuke Fukui, Mikihiko Nishitani, Masahiro Sakai, Michiko Okafuji, Yayoi Okui, Yosuke Honda, Yasuhiro Yamauchi, Osamu Inoue, Hiroshi Asano
  • Patent number: 8298362
    Abstract: The present invention aims to provide a manufacturing method for a PDP which allows even high-definition and ultra-high-definition PDPs to demonstrate an excellent image display capability at improved luminous efficiency, by suppressing variation of a discharge gas composition, and by eliminating an impurity gas in a discharge space effectively. To achieve the aim, deterioration of an absorbent material 39 composed of copper ion-exchanged ZSM-5-type zeolite is prevented, by performing both sealing and evacuation steps for the front substrate 2 and back substrate 9 in a non-oxidizing gas atmosphere. This maintains properties of the absorbent material 39 for absorbing the impurity gas without degradation, even if the absorbent material 39 absorbs a Xe gas in a discharge gas introducing step.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Masahiro Sakai, Keisuke Okada, Yayoi Okui
  • Patent number: 8183778
    Abstract: The present invention provides a phosphor with high luminance and color purity. The phosphor of the present invention is represented by the general formula: aYO3/2·(3?a)CeO3/2·bAlO3/2·cGaO3/2, where 2.80?a?2.99, 1.00?b?5.00, 0?c?4.00, and 4.00?b+c?5.00 are satisfied. In the phosphor, a peak whose peak top is located in the range of diffraction angle 2? of not less than 16.7 degrees but not more than 16.9 degrees is present in an X-ray diffraction pattern obtained by measurement on the phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: May 22, 2012
    Assignee: Panasonic Corporation
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi
  • Patent number: 8169143
    Abstract: A plasma display panel (200) of the present invention includes a first panel (1) and a second panel (8). A discharge space (14) is formed between the first panel (1) and the second panel (8). In the plasma display panel (200), an electron emitting material (20) is disposed to face the discharge space (14). The electron emitting material (20) contains Sn, an alkali metal, O (oxygen), and at least one element selected from the group consisting of Ca, Sr, and Ba.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 1, 2012
    Assignee: Panasonic Corporation
    Inventors: Yayoi Okui, Osamu Inoue, Kojiro Okuyama, Seigo Shiraishi
  • Publication number: 20110193474
    Abstract: A material suitable for improving the secondary electron emission coefficient of PDPs is provided to thereby enable a PDP to operate at a higher efficiency. Provided is a PDP (200) which includes a protective layer (7) formed by MgO and electron-emitting particles constituted of a crystalline compound dispersed on the protective layer (7) to form an electron emission layer (20). The electron-emitting particles are a crystalline compound whose primary components are indium, oxygen, and one or more selected from the group consisting of calcium, strontium, barium, and rare earth metals.
    Type: Application
    Filed: January 14, 2010
    Publication date: August 11, 2011
    Inventors: Osamu Inoue, Hiroshi Asano, Yayoi Okui, Kojiro Okuyama, Seigo Shiraishi
  • Publication number: 20110175554
    Abstract: The present invention aims to provide a plasma display panel that can be driven at low voltage and can offer favorable image display performance. In order to achieve the aim, on a surface of the front panel 1 on which the display electrode 5 is formed, the protective layer 7 made by using a crystalline oxide material that contains a crystalline oxide selected from the group consisting of (i) at least one of SrCeO3 and BaCeO3 and (ii) a solid solution of SrCeO3 and BaCeO3 is disposed so as to face the discharge space 14. By using the crystalline oxide material that contains the crystalline oxide selected from the group consisting of (i) at least one of SrCeO3 and BaCeO3 and (ii) a solid solution of SrCeO3 and BaCeO3, chemical stability can be improved without reducing secondary electron emission efficiency. A PDP capable of lowering drive voltage compared with a case where MgO is used can be obtained by using the crystalline oxide material.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 21, 2011
    Inventors: Osamu Inoue, Hiroshi Asano, Yayoi Okui, Kojiro Okuyama
  • Publication number: 20110163657
    Abstract: The present invention provides a phosphor with less luminance degradation that includes an oxide that is excellent in chemical stability and allows the electrostatic charge of the phosphor surface to shift toward positive direction. The present invention is a phosphor including a phosphor body and a composite oxide on at least a part of the surface of the phosphor body. The composite oxide contains M, Sn, and O, and M is at least one element selected from the group consisting of Ca, Sr, and Ba.
    Type: Application
    Filed: May 12, 2010
    Publication date: July 7, 2011
    Applicant: PANASONIC CORPORATION
    Inventors: Yayoi Okui, Osamu Inoue, Kojiro Okuyama, Seigo Shiraishi
  • Publication number: 20110068680
    Abstract: The present invention provides a phosphor with high luminance and color purity. The phosphor of the present invention is represented by the general formula: aYO3/2·(3?a)CeO3/2·bAlO3/2·cGaO3/2, where 2.80?a?2.99, 1.00?b?5.00, 0?c?4.00, and 4.00?b+c?5.00 are satisfied. In the phosphor, a peak whose peak top is located in the range of diffraction angle 2? of not less than 16.7 degrees but not more than 16.9 degrees is present in an X-ray diffraction pattern obtained by measurement on the phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Application
    Filed: April 9, 2010
    Publication date: March 24, 2011
    Applicant: Panasonic Corporation
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi
  • Publication number: 20110042001
    Abstract: The present invention aims to provide a manufacturing method for a PDP which allows even high-definition and ultra-high-definition PDPs to demonstrate an excellent image display capability at improved luminous efficiency, by suppressing variation of a discharge gas composition, and by eliminating an impurity gas in a discharge space effectively. To achieve the aim, deterioration of an absorbent material 39 composed of copper ion-exchanged ZSM-5-type zeolite is prevented, by performing both sealing and evacuation steps for the front substrate 2 and back substrate 9 in a non-oxidizing gas atmosphere. This maintains properties of the absorbent material 39 for absorbing the impurity gas without degradation, even if the absorbent material 39 absorbs a Xe gas in a discharge gas introducing step.
    Type: Application
    Filed: February 25, 2010
    Publication date: February 24, 2011
    Inventors: Masahiro Sakai, Keisuke Okada, Yayoi Okui
  • Publication number: 20100259466
    Abstract: The present invention aims to improve efficiency of a PDP by providing a material suitable for improving a secondary electron emission coefficient of the PDP. In order to achieve the aim, in a PDP 200, an electron emission layer 20 is formed by dispersing electron emissive particles including a crystalline compound on a protective layer 7 made of MgO. The crystalline compound is, for example, CaSnO3, SrSnO3, BaSnO3, or a solid solution of two or more of them (e.g. (Ca, Sr)SnO3 and (Sr, Ba)SnO3).
    Type: Application
    Filed: December 25, 2008
    Publication date: October 14, 2010
    Inventors: Osamu Inoue, Hiroshi Asano, Yayoi Okui, Kojiro Okuyama, Seigo Shiraishi, Yukihiro Morita, Kyohei Yoshino, Masanori Miura
  • Publication number: 20100259158
    Abstract: A plasma display panel (200) of the present invention includes a first panel (1) and a second panel (8). A discharge space (14) is formed between the first panel (1) and the second panel (8). In the plasma display panel (200), an electron emitting material (20) is disposed to face the discharge space (14). The electron emitting material (20) contains Sn, an alkali metal, O (oxygen), and at least one element selected from the group consisting of Ca, Sr, and Ba.
    Type: Application
    Filed: July 22, 2009
    Publication date: October 14, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Yayoi Okui, Osamu Inoue, Kojiro Okuyama, Seigo Shiraishi
  • Publication number: 20100237765
    Abstract: The blue phosphor of the present invention is represented by the general formula aBaO.bSrO.(1?a?b)EuO.cMgO.dAlO3/2.eWO3, where 0.70?a?0.95, 0?b?0.15, 0.95?c?1.15, 9.00?d?11.00, 0.001?e?0.200, and a+b?0.97 are satisfied. In the blue phosphor of the present invention, two peaks whose tops are located in a range of diffraction angle 2?=13.0 to 13.6 degrees and one peak whose top is located in a range of diffraction angle 2?=14.6 to 14.8 degrees are present in an X-ray diffraction pattern obtained by measurement on the blue phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Application
    Filed: July 3, 2009
    Publication date: September 23, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi
  • Publication number: 20100237764
    Abstract: The blue phosphor of the present invention includes ZrO2 and a metal aluminate that is represented by the general formula aBaO.bSrO.(1?a?b)EuO.cMgO.dAlO3/2.eWO3, where 0.70?a?0.95, 0?b?0.15, 0.95?c?1.15, 9.00?d?11.00, 0.001?e?0.200, and a+b?0.97 are satisfied. This blue phosphor has a ZrO2 content of 0.01 to 1.00% by weight. In the blue phosphor of the present invention, two peaks whose tops are located in a range of diffraction angle 2?=13.0 to 13.6 degrees are present in an X-ray diffraction pattern obtained by measurement on the blue phosphor using an X-ray with a wavelength of 0.774 ?.
    Type: Application
    Filed: July 3, 2009
    Publication date: September 23, 2010
    Applicant: PANASONIC CORPORATION
    Inventors: Kojiro Okuyama, Yayoi Okui, Seigo Shiraishi