Patents by Inventor Ye Du

Ye Du has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240089542
    Abstract: The embodiments of the present disclosure provide a video content preview interactive method and apparatus, an electronic device, and a storage medium. A video-playing interface is displayed, a progress bar component is provided in the video-playing interface, and the progress bar component is used for displaying a playing progress of a target video played in the video-playing interface; a target caption corresponding to a target timestamp of the target video is displayed in response to a moving instruction for the progress bar component, where the moving operation indicates the target timestamp of the target video, and the target caption indicates video content of the target video at the target timestamp.
    Type: Application
    Filed: September 8, 2023
    Publication date: March 14, 2024
    Inventors: Yidan TANG, Zhilin ZHANG, Siqi TAN, Yuzhang DU, Ye LIN
  • Patent number: 11915761
    Abstract: In certain aspects, a memory device includes a memory string including a drain select gate (DSG) transistor, a plurality of memory cells, and a source select gate (SSG) transistor, and a peripheral circuit coupled to the memory string. The peripheral circuit is configured to in response to an interrupt during a program operation on a select memory cell of the plurality of memory cells, turn on at least one of the DSG transistor or the SSG transistor. The peripheral circuit is also configured to suspend the program operation after turning on the at least one of the DSG transistor or the SSG transistor.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: February 27, 2024
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Zhichao Du, Yu Wang, Haibo Li, Ke Jiang, Ye Tian
  • Patent number: 9899044
    Abstract: The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 20, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Takao Furubayashi, Yukiko Takahashi, Kazuhiro Hono, Ye Du
  • Publication number: 20170221507
    Abstract: The present invention addresses the problem of providing an element which uses the current-perpendicular-to-plane giant magnetoresistance (CPPGMR) effect of a thin film having the three-layer structure of ferromagnetic metal/non-magnetic metal/ferromagnetic metal. The problem is solved by a magnetoresistive element provided with a lower ferromagnetic layer and an upper ferromagnetic layer which contain a Heusler alloy, and a spacer layer sandwiched between the lower ferromagnetic layer and the upper ferromagnetic layer, the magnetoresistive element being characterized in that the spacer layer contains an alloy having a bcc structure. Furthermore, it is preferable for the alloy to have a disordered bcc structure.
    Type: Application
    Filed: July 28, 2015
    Publication date: August 3, 2017
    Inventors: Takao FURUBAYASHI, Yukiko TAKAHASHI, Kazuhiro HONO, Ye DU
  • Publication number: 20170092307
    Abstract: The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
    Type: Application
    Filed: October 31, 2016
    Publication date: March 30, 2017
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ye DU, Takao FURUBAYASHI, Yukiko TAKAHASHI, Kazuhiro HONO
  • Patent number: 9589583
    Abstract: The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: March 7, 2017
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ye Du, Takao Furubayashi, Yukiko Takahashi, Kazuhiro Hono
  • Patent number: 9558767
    Abstract: The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: January 31, 2017
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ye Du, Takao Furubayashi, Yukiko Takahashi, Kazuhiro Hono
  • Patent number: 9493821
    Abstract: A DNA library, and a preparing method thereof, a method of determining DNA sequence information, an apparatus and a kit for detecting SNPs, and a method for genotyping may be provided. The method for preparing the DNA library may comprise the steps of: digesting a genomic DNA sample using a restriction endonuclease to obtain a digested product, wherein the restriction endonuclease comprises at least one selected from the group consisting of Mbo II and Tsp 45I; separating the digested product to obtain DNA fragments having a length of 100 bp to 1,000 bp; end-repairing the DNA fragments to obtain an end-repaired DNA fragments; adding a base A to the end of the end-repaired DNA fragments to obtain DNA fragments having a terminal base A; and ligating the DNA fragments having the terminal base A with sequencing adaptors to obtain the DNA library.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: November 15, 2016
    Assignee: BGI TECH SOLUTIONS CO., LTD.
    Inventors: Ye Du, Meiru Zhao, Ying Chen, Jinghua Wu, Geng Tian, Jun Wang
  • Publication number: 20160019917
    Abstract: The CPPGMR element of the present invention has an orientation layer 12 formed on a substrate 11 to texture a Heusler alloy into a (100) direction, an underlying layer 13 that is an electrode for magneto-resistance measurement stacked on the orientation layer 12, a lower ferromagnetic layer 14 and an upper ferromagnetic layer 16 each stacked on the underlying layer 13 and made of a Heusler alloy, a spacer layer 15 sandwiched between the lower ferromagnetic layers 14 and the upper ferromagnetic layers 16, and a cap layer 17 stacked on the upper ferromagnetic layer 16 for surface-protection. This manner makes it possible to provide, inexpensively, an element using a current-perpendicular-to-plane giant magneto-resistance effect (CPPGMR) of a thin film having a trilayered structure of a ferromagnetic metal/a nonmagnetic metal/a ferromagnetic metal, thereby showing excellent performances.
    Type: Application
    Filed: April 2, 2014
    Publication date: January 21, 2016
    Applicant: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Ye DU, Takao FURUBAYASHI, Yukiko TAKAHASHI, Kazuhiro HONO
  • Publication number: 20130288907
    Abstract: A DNA library, and a preparing method thereof, a method of determining DNA sequence information, an apparatus and a kit for detecting SNPs, and a method for genotyping may be provided. The method for preparing the DNA library may comprise the steps of: digesting a genomic DNA sample using a restriction endonuclease to obtain a digested product, wherein the restriction endonuclease comprises at least one selected from the group consisting of Mbo II and Tsp 45I; separating the digested product to obtain DNA fragments having a length of 100 bp to 1,000 bp; end-repairing the DNA fragments to obtain an end-repaired DNA fragments; adding a base A to the end of the end-repaired DNA fragments to obtain DNA fragments having a terminal base A; and ligating the DNA fragments having the terminal base A with sequencing adaptors to obtain the DNA library.
    Type: Application
    Filed: September 21, 2011
    Publication date: October 31, 2013
    Inventor: Ye Du