Patents by Inventor Ye Fang

Ye Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083036
    Abstract: Methods, apparatuses, systems, and computer readable media for determining a position of a tracking device. The tracking device includes a vision sensor and an inertial sensor. A first position of the tracking device in relative to a reference marker is obtained based on an image of the reference marker that is collected by the vison sensor. A second position of the tracking device in relative to the first position is obtained by the inertial sensor after a movement of the tracking device. A position of the tracking device in relative to the reference marker is determined based on the first and second positions.
    Type: Application
    Filed: April 13, 2021
    Publication date: March 14, 2024
    Inventors: Ye Tian, Xinyu Fang, Jiafan Zhang
  • Patent number: 11917130
    Abstract: A video coding mechanism for viewpoint dependent video coding is disclosed. The mechanism includes receiving a spherical video signal stitched from multiple directional video streams. The spherical video signal is mapped into a plurality of sub-picture video signals each containing a sequence of sub-pictures. The plurality of sub-picture video signals, are encoded as a plurality of sub-picture bitstreams, such that, when decoded at a decoder, a value of each sample in each sub-picture is identical to a value of a corresponding sample in a decoded entire picture composed from the sub-pictures. The plurality of sub-picture bitstreams are composed into a plurality of sub-picture tracks with an indication that the sub-picture tracks are conforming to a particular video profile. The sub-picture bitstreams are transmitted toward a decoder to support decoding and displaying virtual reality video viewport.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: February 27, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ye-Kui Wang, Huameng Fang, Yuqun Fan, Jianle Chen
  • Publication number: 20240026287
    Abstract: A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 25, 2024
    Inventors: Ye Fang, Ann MeeJin Ferrie, Vasiliy Nikolaevich Goral, David Henry, Martial Hervy, Corinne Walerack, Yue Zhou
  • Publication number: 20230364606
    Abstract: A method for manufacturing a microfluidic device includes depositing a bonding layer on a surface of a second glass layer of a glass substrate having a first glass layer and the second glass layer fused to the first glass layer, such that a masked region of the surface is covered by the bonding layer, and an exposed region of the surface is uncovered by the bonding layer; removing a portion of the second glass layer corresponding to the exposed region of the surface to form a flow channel in the glass substrate; and bonding a cover to the glass substrate with the bonding layer.
    Type: Application
    Filed: July 27, 2023
    Publication date: November 16, 2023
    Inventors: Ye Fang, Jin Su Kim, Aize Li
  • Patent number: 11752500
    Abstract: A method for manufacturing a microfluidic device (100) includes depositing a bonding layer (106) on a surface of a second glass layer (104a) of a glass substrate having a first glass layer (102) and the second glass layer (104a) fused to the first glass layer (102), such that a masked region of the surface is covered by the bonding layer, and an exposed region of the surface is uncovered by the bonding layer; removing a portion of the second glass layer corresponding to the exposed region of the surface to form a flow channel (112) in the glass substrate; and bonding a cover (108) to the glass substrate with the bonding layer (106).
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: September 12, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Ye Fang, Jin Su Kim, Aize Li
  • Patent number: 11746322
    Abstract: A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 5, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Ye Fang, Ann MeeJin Ferrie, Vasiliy Nikolaevich Goral, David Henry, Martial Hervy, Corinne Walerack, Yue Zhou
  • Patent number: 11667906
    Abstract: Magnetic microcarrier beads have a particle size of 1 to 1000 micrometers and include a composite core and a polymer coating that surrounds and encapsulates the core. The composite core includes magnetic particles embedded within an indigestible polymer matrix. The coating is a digestible or indigestible polymer that facilitates cell adhesion to the surface of the beads during cell culture. Magnetic force can be used to agitate the microcarrier beads during cell culture as well as to separate the beads from cultured cells or processed bio-media.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 6, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Stephen Joseph Caracci, Ye Fang, Ann MeeJin Ferrie, Yan Jin, Lingyan Wang, Yue Zhou
  • Publication number: 20220081661
    Abstract: A cell culture apparatus may include a substrate defining a well. The well may define an interior surface, an exterior surface, an upper aperture and a nadir. The substrate may define a thickness between the interior and exterior surfaces that has a thickness proximate the nadir that is greater than or equal to a thickness proximate the upper aperture.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Inventors: Ye Fang, Ann MeeJin Ferrie, Vasiliy Nikolaevich Goral, Allison Jean Tanner, Qi Wu
  • Patent number: 11274059
    Abstract: A dental formulation including: a bioactive glass composition as defined herein, in an effective amount; and a suitable carrier as defined herein, in an effective amount. Also disclosed is a method of making and using the dental formulation to treat, for example, dentin sensitivities.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: March 15, 2022
    Assignee: Corning Incorporated
    Inventors: Huayun Deng, Ye Fang, Qiang Fu, John Christopher Mauro, Michael S Pambianchi
  • Publication number: 20210299629
    Abstract: A method for making a microfluidic device having one or more different patterned polymeric hydrogel nanostructure is provided. The method includes: providing a first substrate having a first patterned array of polymeric hydrogel nanostructures on a first interior surface and a peripheral surface portion; providing a second substrate having a second interior surface and a side wall with an end surface; and bonding the end surface of the second substrate to the peripheral surface portion of the first substrate such that the first and second interior surfaces define a hermetic cavity within the bonded first and second substrate. The microfluidic device can be designed to include a variety of different patterned array of polymeric hydrogel nanostructures depending on the desired application and properties for the device.
    Type: Application
    Filed: August 1, 2019
    Publication date: September 30, 2021
    Inventor: Ye Fang
  • Publication number: 20210301335
    Abstract: A flow cell article is provided where the flow cell article includes a substrate having one or more layers; a fluidic channel disposed in the substrate wherein the fluidic channel includes at least one reactive surface comprising: a coupling agent having a first functional group covalently attached to the substrate of the fluidic channel and a second imide functional group covalently attached to a polymer of formula (I), where R1 is a residue of an unsaturated monomer that has been copolymerized with maleic anhydride; R2 is H, an alkyl group, an oligo(ethylene glycol), and/or a dialkyl amine; m, n, and o are each from 1 to 10,000; X is a divalent NH, O, and/or S; and Z is the first functional group.
    Type: Application
    Filed: August 5, 2019
    Publication date: September 30, 2021
    Inventors: Ye Fang, Jeffrey Glenn Lynn, Wei Sun, Ying Wei
  • Publication number: 20210291173
    Abstract: A microfluidic device includes a first substrate comprising a surface, a flow channel disposed in the first substrate such that a sidewall of the flow channel extends between a floor of the flow channel and the surface, a film disposed on the floor of the flow channel, an array of wells disposed in the film, and a second substrate bonded to the surface of the first substrate, whereby the second substrate at least partially covers the flow channel.
    Type: Application
    Filed: July 30, 2019
    Publication date: September 23, 2021
    Inventors: Ye Fang, Joydeep Lahiri, Georges Roussos, Paul Michael Then
  • Publication number: 20210291172
    Abstract: A microfluidic device includes a flow channel disposed in a glass-based substrate; and a cover bonded to the glass-based substrate and at least partially covering the flow channel, such that the cover has a thickness of at most 200 ?m.
    Type: Application
    Filed: July 30, 2019
    Publication date: September 23, 2021
    Inventors: Ye Fang, Rui Zhang
  • Publication number: 20210252505
    Abstract: A process of manufacturing a microfluidic device (200, 201, 202, 300, 301, 302, 400, 401, 402) includes the steps of attaching a monolayer of polymer beads onto a first substrate (210, 410) depositing a metal oxide film onto the first substrate (210, 410) over the monolayer of polymer beads, and removing the polymer beads to form an array of metal oxide nano-wells (240, 440) wherein the first substrate (210, 410) is exposed at the bottom of the nano-wells (240, 440). The process also includes depositing an organophosphate layer onto the metal oxide film. The process also calls for depositing a silane coating layer or an acrylate polymer onto the exposed first substrate (210, 410). The method further includes bonding a second substrate (220, 420) to the first substrate (210, 410) to enclose the array of metal oxide nano-wells (240, 440) in a cavity within the first and second substrates (210, 220, 410, 420).
    Type: Application
    Filed: June 10, 2019
    Publication date: August 19, 2021
    Inventors: Donald Erwin Allen, Ye Fang, Jeffrey Glenn Lynn, Barry James Paddock
  • Publication number: 20210213447
    Abstract: A patterned flow cell includes a substrate (100, 200) having a patterned array of metal oxide nano-patches (104, 202). Each of the metal oxide nano-patches (104, 202) has an organophosphate coating layer (106, 206) to increase the ability of the metal oxide (104, 204) to bind with DNA, proteins, or polynucleotides. A silane coating layer (108, 208) is deposited in the interstitial spaces on the substrate (100, 200) between the metal oxide nano-patches (104, 202) to prevent the binding of polynucleotides, DNA, or proteins in the interstitial spaces.
    Type: Application
    Filed: June 10, 2019
    Publication date: July 15, 2021
    Inventor: Ye Fang
  • Publication number: 20210213448
    Abstract: A method of making a microfluidic device (200, 201, 300) can include depositing a layer of photoresist onto a first substrate (210, 270, 310), selectively removing the photoresist to expose portions of the first substrate (210, 270, 310), etching the exposed portions of the first substrate (210, 270, 310) to form an array of nano-wells (240, 340), coating each nano-well (240, 340) with metal oxide, and coating the metal oxide on each nano-well (240, 340) with a first material to increase binding of DNA, proteins, and polynucleotides to the metal oxide. A layer of a second material can be deposited on interstitial areas between the nano-wells (240, 340) to inhibit binding of DNA, proteins, and polynucleotides to the interstitial areas. A second substrate (220, 320) can be bonded to the first substrate (210, 270, 310) to enclose the array of nano-wells (240, 340) in a cavity.
    Type: Application
    Filed: June 10, 2019
    Publication date: July 15, 2021
    Inventors: Donald Erwin Allen, Ye Fang, Wei Jiang, Jeffrey Glenn Lynn, Barry James Paddock, Ying Zhang
  • Publication number: 20210196585
    Abstract: An exfoliant composition including: a microbead comprising a core and a shell: the core comprising an abrasive particle having an average particle size of from 50 to 1,000 microns; and the shell comprising a hydrogel. Also disclosed is a method of making the exfoliant composition and a method of using the exfoliant composition.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Inventors: Theresa Chang, Ye Fang, David Henry, Wendell Porter Weeks, Ying Wei
  • Publication number: 20210130223
    Abstract: A dental formulation including: a bioactive glass composition as defined herein, in an effective amount; and a suitable carrier as defined herein, in an effective amount. Also disclosed is a method of making and using the dental formulation to treat, for example, dentin sensitivities.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 6, 2021
    Inventors: Huayun Deng, Ye Fang, Qiang Fu, John Christopher Mauro, Michael S Pambianchi
  • Publication number: 20210069710
    Abstract: A method for manufacturing a microfluidic device (100) includes depositing a bonding layer (106) on a surface of a second glass layer (104a) of a glass substrate having a first glass layer (102) and the second glass layer (104a) fused to the first glass layer (102), such that a masked region of the surface is covered by the bonding layer, and an exposed region of the surface is uncovered by the bonding layer; removing a portion of the second glass layer corresponding to the exposed region of the surface to form a flow channel (112) in the glass substrate; and bonding a cover (108) to the glass substrate with the bonding layer (106).
    Type: Application
    Filed: April 23, 2019
    Publication date: March 11, 2021
    Inventors: Ye Fang, Jin Su Kim, Aize Li
  • Publication number: 20210062142
    Abstract: A cell culture article includes a substrate having a polymer coating that is conducive to colony passaging of cells cultured on the coating. Example polymer coatings are formed from polygalacturonic acid (PGA), alginate, or combinations thereof. Cells cultured on the polymer coating can be separated from the substrate as a colony or layer of cells by exposing the polymer coating to (i) a chelating agent, (ii) a proteinase-free enzyme, or (iii) a chelating agent and a proteinase-free enzyme.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 4, 2021
    Inventors: Ye Fang, Ann MeeJin Ferrie, Vasiliy Nikolaevich Goral, David Henry, Martial Hervy, Corinne Walerack, Yue Zhou