Patents by Inventor Ye Ni

Ye Ni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11542479
    Abstract: The invention discloses an alcohol dehydrogenase mutant and use thereof. The alcohol dehydrogenase mutant of the present invention has high thermal stability and enables high catalytic efficiency and high conversion rate (i.e. space time yield) in the asymmetric reduction of prochiral diaryl ketones to produce chiral diaryl alcohols. Therefore, the alcohol dehydrogenase mutant of the present invention has extremely high prospect of application in the production of chiral diaryl alcohols, such as (S)-(4-chlorophenyl)-(pyridin-2-yl)-methanol, (R)-(4-chlorophenyl)-(pyridin-2-yl)-methanol.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: January 3, 2023
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ye Ni, Wei Dai, Guochao Xu, Jieyu Zhou, Ruizhi Han, Jinjun Dong
  • Publication number: 20220396781
    Abstract: The present invention discloses a cyclohexenecarboxylate ester hydrolase, and a mutant, a coding gene, an expression vector, recombinant bacterium and use thereof. The cyclohexenecarboxylate ester hydrolase AcEst1 and its mutant of the present invention have the function of enantioselectively resolving methyl 3-cyclohexene-1-carboxylate with high efficiency to prepare optically active (S)-3-cyclohexene-1-carboxylic acid. When the substrate concentration is as high as 2000 mM (about 280 g/L), the optical purity of the product is higher than 99%, and the substrate/catalyst is as high as 3500 g/g. As compared with other preparation methods, the product prepared by the method of the present invention has high concentration and high optical purity, the catalytic efficiency is high, the reaction conditions are mild. Furthermore, the method is environmentally friendly, simple in operation and easy for industrial scale-up, thus has a good prospect of application in industry.
    Type: Application
    Filed: July 30, 2020
    Publication date: December 15, 2022
    Inventors: Ye NI, Zhe DOU, Guochao XU
  • Patent number: 11441133
    Abstract: The invention discloses a strain of Acinetobacter and use thereof in the production of chiral 3-cyclohexene-1-carboxylic acid. Its taxonomic name is Acinetobacter sp., which is deposited on Jan. 21, 2019 at the China General Microbiological Culture Collection Center, under accession number CGMCC No. 17220. Using the Acinetobacter strain of the invention to produce chiral methyl 3-cyclohexene-1-carboxylate, the resulting methyl (S)-3-cyclohexene-1-carboxylate has an optical purity of 99% or more, and the catalyst has good stability, mild reaction condition and can withstand high concentrations of substrate and product. Using the resolution process of the invention, (S)-3-cyclohexene-1-carboxylic acid with high optical purity and high concentration can be simply and efficiently obtained, and the process is energy-saving and environmentally friendly, and the high-concentration of product is beneficial to downstream product recovery process.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: September 13, 2022
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ye Ni, Zhe Dou, Guochao Xu
  • Patent number: 11203743
    Abstract: The disclosure discloses a method for producing long-chain glycosylated genistein and belongs to the technical fields of enzyme engineering and fermentation engineering. The disclosure provides a method for producing long-chain glycosylated genistein. By using this method to produce long-chain glycosylated genistein, the content of long-chain glycosylated genistein in a reaction solution and the ratio of the content of long-chain glycosylated genistein in the reaction solution to the content of total glycosylated genistein in the reaction solution can be increased. The content of long-chain glycosylated genistein in the reaction solution can be increased to 10.3 g/L, and the ratio of the content of long-chain glycosylated genistein in the reaction solution to the content of total glycosylated genistein in the reaction solution can be increased to 70%.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: December 21, 2021
    Assignee: Jiangnan University
    Inventors: Ruizhi Han, Ye Ni, Baocheng Chai
  • Publication number: 20210363500
    Abstract: The invention discloses an alcohol dehydrogenase mutant and use thereof. The alcohol dehydrogenase mutant of the present invention has high thermal stability and enables high catalytic efficiency and high conversion rate (i.e. space time yield) in the asymmetric reduction of prochiral diaryl ketones to produce chiral diaryl alcohols. Therefore, the alcohol dehydrogenase mutant of the present invention has extremely high prospect of application in the production of chiral diaryl alcohols, such as (S)-(4-chlorophenyl)-(pyridin-2-yl)-methanol, (R)-(4-chlorophenyl)-(pyridin-2-yl)-methanol.
    Type: Application
    Filed: May 13, 2020
    Publication date: November 25, 2021
    Inventors: Ye NI, Wei DAI, Guochao XU, Jieyu ZHOU, Ruizhi HAN, Jinjun DONG
  • Patent number: 11162124
    Abstract: Disclosed is an alcohol dehydrogenase mutant and application thereof in cofactor regeneration, and belongs to the technical fields of enzyme engineering and bioengineering. The alcohol dehydrogenase mutant is obtained by mutating valine at position 84 and/or tyrosine at position 127 in alcohol dehydrogenase having an original amino acid sequence as set forth in SEQ ID No. 1. The alcohol dehydrogenase mutant has high activity for a variety of alcohol co-substrates, and can catalyze these enzyme co-substrates for the regeneration of cofactor NADPH. Compared with the wild-type alcohol dehydrogenase KpADH, the alcohol dehydrogenase mutant has higher activity and catalytic efficiency, and for co-substrate 1,4-butanediol, its kcat value can be up to 75.9 min?1, its kcat/Km value can be up to 2009 min?1·M?1, and its Km value can be as low as 11.3 mM. Therefore, the alcohol dehydrogenase mutant has a higher value in industrial application.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: November 2, 2021
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ye Ni, Cheng Zhu, Guochao Xu, Jieyu Zhou
  • Patent number: 11078465
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 3, 2021
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ye Ni, Yue Wang, Wei Dai, Guochao Xu, Jieyu Zhou
  • Publication number: 20210230566
    Abstract: The invention discloses a strain of Acinetobacter and use thereof in the production of chiral 3-cyclohexene-1-carboxylic acid. Its taxonomic name is Acinetobacter sp., which is deposited on Jan. 21, 2019 at the China General Microbiological Culture Collection Center, under accession number CGMCC No. 17220. Using the Acinetobacter strain of the invention to produce chiral methyl 3-cyclohexene-1-carboxylate, the resulting methyl (S)-3-cyclohexene-1-carboxylate has an optical purity of 99% or more, and the catalyst has good stability, mild reaction condition and can withstand high concentrations of substrate and product. Using the resolution process of the invention, (S)-3-cyclohexene-1-carboxylic acid with high optical purity and high concentration can be simply and efficiently obtained, and the process is energy-saving and environmentally friendly, and the high-concentration of product is beneficial to downstream product recovery process.
    Type: Application
    Filed: November 22, 2019
    Publication date: July 29, 2021
    Inventors: Ye NI, Zhe DOU, Guochao XU
  • Publication number: 20210108182
    Abstract: The disclosure discloses a method for producing long-chain glycosylated genistein and belongs to the technical fields of enzyme engineering and fermentation engineering. The disclosure provides a method for producing long-chain glycosylated genistein. By using this method to produce long-chain glycosylated genistein, the content of long-chain glycosylated genistein in a reaction solution and the ratio of the content of long-chain glycosylated genistein in the reaction solution to the content of total glycosylated genistein in the reaction solution can be increased. The content of long-chain glycosylated genistein in the reaction solution can be increased to 10.3 g/L, and the ratio of the content of long-chain glycosylated genistein in the reaction solution to the content of total glycosylated genistein in the reaction solution can be increased to 70%.
    Type: Application
    Filed: December 16, 2020
    Publication date: April 15, 2021
    Inventors: Ruizhi HAN, Ye NI, Baocheng CHAI
  • Patent number: 10865390
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 15, 2020
    Assignee: JIANGNAN UNIVERSITY
    Inventors: Ye Ni, Jieyu Zhou, Guochao Xu, Yue Wang
  • Publication number: 20200362375
    Abstract: Disclosed is an alcohol dehydrogenase mutant and application thereof in cofactor regeneration, and belongs to the technical fields of enzyme engineering and bioengineering. The alcohol dehydrogenase mutant is obtained by mutating valine at position 84 and/or tyrosine at position 127 in alcohol dehydrogenase having an original amino acid sequence as set forth in SEQ ID No. 1. The alcohol dehydrogenase mutant has high activity for a variety of alcohol co-substrates, and can catalyze these enzyme co-substrates for the regeneration of cofactor NADPH. Compared with the wild-type alcohol dehydrogenase KpADH, the alcohol dehydrogenase mutant has higher activity and catalytic efficiency, and for co-substrate 1,4-butanediol, its kcat value can be up to 75.9 min?1, its kcat/Km value can be up to 2009 min?1·M?1, and its Km value can be as low as 11.3 mM. Therefore, the alcohol dehydrogenase mutant has a higher value in industrial application.
    Type: Application
    Filed: April 14, 2020
    Publication date: November 19, 2020
    Inventors: Ye Ni, Cheng Zhu, Guochao Xu, Jieyu Zhou
  • Patent number: 10822593
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: November 3, 2020
    Assignee: Jiangnan University
    Inventors: Ye Ni, Jieyu Zhou, Guochao Xu, Yue Wang
  • Publication number: 20190345457
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Ye NI, Jieyu ZHOU, Guochao XU, Yue WANG
  • Publication number: 20190345455
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Inventors: Ye Ni, Yue Wang, Wei Dai, Guochao Xu, Jieyu Zhou
  • Publication number: 20190345456
    Abstract: The present disclosure discloses an alcohol dehydrogenase mutant and application thereof in synthesis of diaryl chiral alcohols, and belongs to the technical field of bioengineering. The alcohol dehydrogenase mutant of the present disclosure has excellent catalytic activity and stereoselectivity, and may efficiently catalyze the preparation of a series of chiral diaryl alcohols in R- and S-configurations. By coupling alcohol dehydrogenase of the present disclosure to glucose dehydrogenase or formate dehydrogenase, the synthesis of chiral diaryl alcohol intermediates of various antihistamines may be achieved. Compared with the prior art, a method for preparing diaryl chiral alcohols through asymmetric catalytic reduction using the alcohol dehydrogenase of the present disclosure has the advantages of simple and convenient operation, high substrate concentration, complete reaction and high product purity, and has great industrial application prospects.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Ye Ni, Jieyu Zhou, Guochao Xu, Yue Wang
  • Patent number: 9626102
    Abstract: A method for controlling a screen of an electronic device is provided. The method includes displaying a plurality of subscreens by dividing a screen, the plurality of subscreens comprising an overlapping region of a certain area with a neighboring subscreen, selecting one of the plurality of subscreens, displaying the selected one of the plurality of subscreen in a mirroring region, and displaying, when receiving a user drag from the selected one of the plurality of subscreens displayed in the mirroring region to a neighboring screen comprising the overlapping region with the selected one of the plurality of subscreens, the neighboring screen comprising the overlapping region with the selected one of the plurality of subscreens, in the mirroring region according to the drag.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: April 18, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-Hoon Kim, Ye-Ni Lee, Jong-Pil Yi, Ji-Hwa Lee
  • Publication number: 20150169141
    Abstract: A method for controlling a screen of an electronic device is provided. The method includes displaying a plurality of subscreens by dividing a screen, the plurality of subscreens comprising an overlapping region of a certain area with a neighboring subscreen, selecting one of the plurality of subscreens, displaying the selected one of the plurality of subscreen in a mirroring region, and displaying, when receiving a user drag from the selected one of the plurality of subscreens displayed in the mirroring region to a neighboring screen comprising the overlapping region with the selected one of the plurality of subscreens, the neighboring screen comprising the overlapping region with the selected one of the plurality of subscreens, in the mirroring region according to the drag.
    Type: Application
    Filed: December 10, 2014
    Publication date: June 18, 2015
    Inventors: Se-Hoon KIM, Ye-Ni LEE, Jong-Pil YI, Ji-Hwa LEE