Patents by Inventor Yee Sook Cho

Yee Sook Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8628963
    Abstract: The present invention relates to a medium composition comprising neuropeptide Y, effective for proliferation and maintenance of undifferentiated pluripotent stem cells, and a method for culturing undifferentiated pluripotent stem cells using the same. The present invention improves the culture conditions for undifferentiated pluripotent stem cells, and ultimately, the present invention can be effectively used for the development of large-scale culture systems, thereby acquiring clinically applicable pluripotent stem cells. Further, the present invention relates to a dedifferentiation medium composition comprising neuropeptide Y (NPY), and a method for inducing dedifferentiation (or reprogramming) using the same. The present invention improves the culture conditions for dedifferentiation and contributes to develop technology of producing clinically applicable induced pluripotent stem cells, thereby being used for the development of stem cell therapy.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: January 14, 2014
    Assignee: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Yee Sook Cho, Mi-Young Son
  • Publication number: 20120171766
    Abstract: The present invention relates to a medium composition comprising neuropeptide Y, effective for proliferation and maintenance of undifferentiated pluripotent stem cells, and a method for culturing undifferentiated pluripotent stem cells using the same. The present invention improves the culture conditions for undifferentiated pluripotent stem cells, and ultimately, the present invention can be effectively used for the development of large-scale culture systems, thereby acquiring clinically applicable pluripotent stem cells. Further, the present invention relates to a dedifferentiation medium composition comprising neuropeptide Y (NPY), and a method for inducing dedifferentiation (or reprogramming) using the same. The present invention improves the culture conditions for dedifferentiation and contributes to develop technology of producing clinically applicable induced pluripotent stem cells, thereby being used for the development of stem cell therapy.
    Type: Application
    Filed: June 16, 2010
    Publication date: July 5, 2012
    Inventors: Yee Sook Cho, Mi-Young Son
  • Patent number: 8093050
    Abstract: Disclosed are a composition for introducing the osteogenic differentiation of human embryonic stem cells and a method for differentiating human embryonic stem cells into an osteoblastic lineage by inhibiting the mTOR signaling pathway. When cultured in the presence of an inhibitor of the mTOR signaling pathway, human embryonic stem cells are effectively induced to differentiate into an osteoblastic lineage. The osteogenic differentiation of human embryonic stem cells using the method and the composition is useful in examining the development and differentiation mechanism of osteoblasts and the cause of metabolic bone diseases, including osteoporosis. In addition, the method and the composition can be applied to the development of osteogenic differentiation techniques for generating clinically useful, terminally differentiated mature cells or progenitor cells.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Yee Sook Cho, Kyu-Won Lee
  • Publication number: 20100297755
    Abstract: Disclosed are a composition for introducing the osteogenic differentiation of human embryonic stem cells and a method for differentiating human embryonic stem cells into an osteoblastic lineage by inhibiting the mTOR signaling pathway. When cultured in the presence of an inhibitor of the mTOR signaling pathway, human embryonic stem cells are effectively induced to differentiate into an osteoblastic lineage. The osteogenic differentiation of human embryonic stem cells using the method and the composition is useful in examining the development and differentiation mechanism of osteoblasts and the cause of metabolic bone diseases, including osteoporosis. In addition, the method and the composition can be applied to the development of osteogenic differentiation techniques for generating clinically useful, terminally differentiated mature cells or progenitor cells.
    Type: Application
    Filed: August 17, 2007
    Publication date: November 25, 2010
    Applicant: Korea Research Institute of Bioscience and Biotechnology
    Inventors: Yee Sook Cho, Kyu-Won Lee