Patents by Inventor Yehonatan BEN DAVID

Yehonatan BEN DAVID has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11793576
    Abstract: Systems and methods are described for planning of catheter ablation procedures, and in particular for planning of the placement of lesions and/or parameters used in ablation. In some embodiments, planning is based on thermal and/or dielectric simulation of lesions, individualized to the anatomy of the particular patient. Optionally, a plan comprises planning of a path along which an ablation lesion is to be formed, the ablation lesion optionally comprising one or more sub-lesions. The plan is optionally optimized for one or more criteria including, for example: minimization of path length, minimization of sub-lesion number, simplification of catheter maneuvering, avoidance of collateral damage to non-target tissue, access to the target dependent on anatomy shape and/or catheter mechanics, and/or features of the target anatomy such as tissue wall thickness and/or fiber direction.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: October 24, 2023
    Assignee: Navix International Limited
    Inventors: Yitzhack Schwartz, Zalman Ibragimov, Yehonatan Ben David, Eli Dichterman
  • Publication number: 20230210398
    Abstract: The present invention relates to imaging a hollow organ. In order to provide an improved and facilitated imaging of a hollow organ of interest, a device (10) for providing three-dimensional data of a hollow organ is provided that comprises a measurement input (12), a data processor (14) and an output interface (16). The measurement input is configured to receive a plurality of local electric field measurements (18) of at least one electrode on a catheter inserted in a lumen of a hollow organ of interest. The measurement input is also configured to receive geometrical data (20) representative of the location of the at least one electrode inside the lumen during the measurements. The data processor is configured to receive pre-set electric field characteristics (22) associated with predetermined anatomical landmarks of the hollow organ expectable in the lumen in dependency of a type of the hollow organ.
    Type: Application
    Filed: June 16, 2021
    Publication date: July 6, 2023
    Inventors: Yitzhack SCHWARTZ, Zalman IBRAGIMOV, Yehonatan BEN DAVID, Eli DICHTERMAN
  • Patent number: 11471067
    Abstract: Methods and systems for position determination are described for using an intrabody probe having a plurality of electrodes to generate a plurality of different electrical fields, and to also measure, using the plurality of electrodes, a measurement set (a Ve-e measurement set) comprising a plurality of measurements of the plurality of different electrical fields while the probe remains in one position. From the Ve-e measurement set, spatial position coordinates for the intrabody probe are estimated within an intrabody coordinate system, using an established mapping between previously observed Ve-e measurement sets and positions in the intrabody coordinate system. Systems and methods for generating and selecting such mappings are also described.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: October 18, 2022
    Assignee: Navix International Limited
    Inventors: Shlomo Ben-Haim, Zalman Ibragimov, Yehonatan Ben David
  • Patent number: 11464422
    Abstract: In some embodiments, a body cavity shape of a subject is reconstructed based on intrabody measurements of at least one property of an electromagnetic field by an intrabody probe (for example, a catheter probe) moving within a plurality of electrical fields intersecting the body cavity. In some embodiments, the electrical fields are generated at least in part from electrodes positioned in close proximity, for example, within 1 cm, of the body cavity. In some embodiments, the body cavity is a chamber of a heart (for example, a left atrium or left ventricle), and the electrodes used to generate the electrical field are positioned in the coronary sinus, a large vein occupying the groove between the left atrium and left ventricle. In some embodiments, known distances between measuring electrodes are used in guiding reconstruction, potentially overcoming difficulties of reconstruction from measurements of non-linear electrical fields.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: October 11, 2022
    Assignee: Navix Internatonal Limited
    Inventors: Yizhaq Shmayahu, Yitzhack Schwartz, Eli Dichterman, Zalman Ibragimov, Shlomo Ben-Haim, Yehonatan Ben David
  • Publication number: 20220273219
    Abstract: A method of estimating a spatial relationship between at least a part of a patient esophagus and a heart chamber, including: measuring at least one electric parameter at one or more positions within the heart chamber to obtain measured values; and estimating the spatial relationship based on the measured values.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Applicant: Navix International Limited
    Inventors: Yitzhack SCHWARTZ, Zalman IBRAGIMOV, Yehonatan BEN DAVID, Yizhaq SHMAYAHU, Eli DICHTERMAN, Shlomo BEN-HAIM
  • Patent number: 11350996
    Abstract: Registration of catheter-sensed intrabody voltage field measurements obtained along one or more tracks of catheter advance of withdrawal is made, in some embodiments, to reference voltage field measurements lying along predetermined tracks. Tracks optionally comprise the course of a blood vessel such as the superior or inferior vena cava, a path defined and/or limited by encounters with a wall of a heart chamber and/or apertures thereof, and/or another track of catheter motion. In some embodiments, transform parameters are propagated to regions away from the track, potentially allowing more rapid acquisition of targets.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 7, 2022
    Assignee: Navix International Limited
    Inventors: Yitzhack Schwartz, Eli Dichterman, Zalman Ibragimov, Yehonatan Ben David
  • Patent number: 11331029
    Abstract: A method of estimating a spatial relationship between at least a part of a patient esophagus and a heart chamber, including: measuring at least one electric parameter at one or more positions within the heart chamber to obtain measured values; and estimating the spatial relationship based on the measured values.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 17, 2022
    Assignee: Navix International Limited
    Inventors: Yitzhack Schwartz, Zalman Ibragimov, Yehonatan Ben David, Yizhaq Shmayahu, Eli Dichterman, Shlomo Ben-Haim
  • Publication number: 20210307836
    Abstract: Systems and methods are described for planning of catheter ablation procedures, and in particular for planning of the placement of lesions and/or parameters used in ablation. In some embodiments, planning is based on thermal and/or dielectric simulation of lesions, individualized to the anatomy of the particular patient. Optionally, a plan comprises planning of a path along which an ablation lesion is to be formed, the ablation lesion optionally comprising one or more sub-lesions. The plan is optionally optimized for one or more criteria including, for example: minimization of path length, minimization of sub-lesion number, simplification of catheter maneuvering, avoidance of collateral damage to non-target tissue, access to the target dependent on anatomy shape and/or catheter mechanics, and/or features of the target anatomy such as tissue wall thickness and/or fiber direction.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Applicant: Navix International Limited
    Inventors: Yitzhack SCHWARTZ, Zalman IBRAGIMOV, Yehonatan BEN DAVID, Eli DICHTERMAN
  • Patent number: 11039888
    Abstract: Systems and methods are described for planning of catheter ablation procedures, and in particular for planning of the placement of lesions and/or parameters used in ablation. In some embodiments, planning is based on thermal and/or dielectric simulation of lesions, individualized to the anatomy of the particular patient. Optionally, a plan comprises planning of a path along which an ablation lesion is to be formed, the ablation lesion optionally comprising one or more sub-lesions. The plan is optionally optimized for one or more criteria including, for example: minimization of path length, minimization of sub-lesion number, simplification of catheter maneuvering, avoidance of collateral damage to non-target tissue, access to the target dependent on anatomy shape and/or catheter mechanics, and/or features of the target anatomy such as tissue wall thickness and/or fiber direction.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: June 22, 2021
    Assignee: Navix International Limited
    Inventors: Yitzhack Schwartz, Zalman Ibragimov, Yehonatan Ben David, Eli Dichterman
  • Patent number: 10828106
    Abstract: Methods and systems for placement of and/or placement planning for body surface electrodes are described. In some embodiments, body surface electrodes are used to generate intra-body electromagnetic fields sensed by intra-body probes for applications such as electrical field-guided catheter navigation and/or dielectric property-based tissue lesion assessment. Sizes and/or positions of body surface electrodes are optionally selected based on the results of electromagnetic simulations. Criteria for selection include, for example, potential gradient uniformity and/or intensity. In some embodiments, body surface electrode placement is performed under automated optical guidance. For example, images are obtained and used to indicate and/or assess body surface electrode placement. Optionally, indication is with respect to fiducial marks placed on the body, to which an electromagnetic simulation is spatially registered.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 10, 2020
    Assignee: Navix International Limited
    Inventors: Yitzhack Schwartz, Zalman Ibragimov, Yehonatan Ben David
  • Publication number: 20200163569
    Abstract: A method of estimating a spatial relationship between at least a part of a patient esophagus and a heart chamber, including :measuring at least one electric parameter at one or more positions within the heart chamber to obtain measured values; and estimating the spatial relationship based on the measured values.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 28, 2020
    Applicant: Navix International Limited
    Inventors: Yitzhack SCHWARTZ, Zalman IBRAGIMOV, Yehonatan BEN DAVID, Yizhaq SHMAYAHU, Eli DICHTERMAN, Shlomo BEN-HAIM
  • Publication number: 20200000368
    Abstract: Methods and systems for position determination are described for using an intrabody probe having a plurality of electrodes to generate a plurality of different electrical fields, and to also measure, using the plurality of electrodes, a measurement set (a Ve-e measurement set) comprising a plurality of measurements of the plurality of different electrical fields while the probe remains in one position. From the Ve-e measurement set, spatial position coordinates for the intrabody probe are estimated within an intrabody coordinate system, using an established mapping between previously observed Ve-e measurement sets and positions in the intrabody coordinate system. Systems and methods for generating and selecting such mappings are also described.
    Type: Application
    Filed: February 8, 2018
    Publication date: January 2, 2020
    Applicant: Navix International Limited
    Inventors: Shlomo BEN-HAIM, Zalman IBRAGIMOV, Yehonatan BEN DAVID
  • Publication number: 20190365280
    Abstract: In some embodiments, a body cavity shape of a subject is reconstructed based on intrabody measurements of at least one property of an electromagnetic field by an intrabody probe (for example, a catheter probe) moving within a plurality of electrical fields intersecting the body cavity. In some embodiments, the electrical fields are generated at least in part from electrodes positioned in close proximity, for example, within 1 cm, of the body cavity. In some embodiments, the body cavity is a chamber of a heart (for example, a left atrium or left ventricle), and the electrodes used to generate the electrical field are positioned in the coronary sinus, a large vein occupying the groove between the left atrium and left ventricle. In some embodiments, known distances between measuring electrodes are used in guiding reconstruction, potentially overcoming difficulties of reconstruction from measurements of non-linear electrical fields.
    Type: Application
    Filed: January 17, 2018
    Publication date: December 5, 2019
    Applicant: Navix International Limited
    Inventors: Yizhaq SHMAYAHU, Yitzhack SCHWARTZ, Eli DICHTERMAN, Zalman IBRAGIMOV, Shlomo BEN-HAIM, Yehonatan BEN DAVID
  • Publication number: 20190307514
    Abstract: Registration of catheter-sensed intrabody voltage field measurements obtained along one or more tracks of catheter advance of withdrawal is made, in some embodiments, to reference voltage field measurements lying along predetermined tracks. Tracks optionally comprise the course of a blood vessel such as the superior or inferior vena cava, a path defined and/or limited by encounters with a wall of a heart chamber and/or apertures thereof, and/or another track of catheter motion. In some embodiments, transform parameters are propagated to regions away from the track, potentially allowing more rapid acquisition of targets.
    Type: Application
    Filed: July 14, 2017
    Publication date: October 10, 2019
    Applicant: Navix International Limited
    Inventors: Yitzhack SCHWARTZ, Eli DICHTERMAN, Zalman IBRAGIMOV, Yehonatan BEN DAVID
  • Publication number: 20180325597
    Abstract: Systems and methods are described for planning of catheter ablation procedures, and in particular for planning of the placement of lesions and/or parameters used in ablation. In some embodiments, planning is based on thermal and/or dielectric simulation of lesions, individualized to the anatomy of the particular patient. Optionally, a plan comprises planning of a path along which an ablation lesion is to be formed, the ablation lesion optionally comprising one or more sub-lesions. The plan is optionally optimized for one or more criteria including, for example: minimization of path length, minimization of sub-lesion number, simplification of catheter maneuvering, avoidance of collateral damage to non-target tissue, access to the target dependent on anatomy shape and/or catheter mechanics, and/or features of the target anatomy such as tissue wall thickness and/or fiber direction.
    Type: Application
    Filed: May 11, 2016
    Publication date: November 15, 2018
    Inventors: Yitzhack Schwartz, Zalman Ibragimov, Yehonatan Ben David, Eli Dichterman
  • Publication number: 20180296277
    Abstract: Methods and systems for placement of and/or placement planning for body surface electrodes are described. In some embodiments, body surface electrodes are used to generate intra-body electromagnetic fields sensed by intra-body probes for applications such as electrical field-guided catheter navigation and/or dielectric property-based tissue lesion assessment. Sizes and/or positions of body surface electrodes are optionally selected based on the results of electromagnetic simulations. Criteria for selection include, for example, potential gradient uniformity and/or intensity. In some embodiments, body surface electrode placement is performed under automated optical guidance. For example, images are obtained and used to indicate and/or assess body surface electrode placement. Optionally, indication is with respect to fiducial marks placed on the body, to which an electromagnetic simulation is spatially registered.
    Type: Application
    Filed: May 11, 2016
    Publication date: October 18, 2018
    Inventors: Yitzhack SCHWARTZ, Zalman IBRAGIMOV, Yehonatan BEN DAVID