Patents by Inventor Yehoshua Dan Agassi

Yehoshua Dan Agassi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8731628
    Abstract: As typically embodied, the present invention's RF cavity device comprises a rigid frame and plural flexible tiles. The frame includes walls of at least substantially uniform thicknesses that describe a hollow pillbox shape. The tiles are at least approximately equally thick, each tile being of at least substantially uniform thickness. Each tile includes a flexible metallic substrate and an HTS coating atop the substrate. The tiles are attached via their corresponding substrates to the inside wall surfaces of the frame so that their corresponding HTS coatings are interiorly exposed. The attached tiles flexibly conform to curved surface areas, are snugly set with narrow seams therebetween, and cover at least approximately the entirety of the frame's inside wall surfaces. A filler material is applied to the seams. The resultant tile configuration is characterized by at least approximate levelness of the exposed HTS coating surfaces and the filled seams.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 20, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Yehoshua Dan Agassi, Daniel E. Oates
  • Patent number: 8412292
    Abstract: Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD?1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD?(?O(T))10(K(2)(T))2/(?O(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth ?O, gap maximum ?O, and kernel K(2).
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: April 2, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Yehoshua Dan Agassi, Daniel E. Oates
  • Patent number: 8391937
    Abstract: As typically embodied, the present invention's RF cavity device comprises a rigid frame and plural flexible tiles. The frame includes walls of at least substantially uniform thicknesses that describe a hollow pillbox shape. The tiles are at least approximately equally thick, each tile being of at least substantially uniform thickness. Each tile includes a flexible metallic substrate and an HTS coating atop the substrate. The tiles are attached via their corresponding substrates to the inside wall surfaces of the frame so that their corresponding HTS coatings are interiorly exposed. The attached tiles flexibly conform to curved surface areas, are snugly set with narrow seams therebetween, and cover at least approximately the entirety of the frame's inside wall surfaces. A filler material is applied to the seams. The resultant tile configuration is characterized by at least approximate levelness of the exposed HTS coating surfaces and the filled seams.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Yehoshua Dan Agassi, Daniel E. Oates
  • Publication number: 20100285969
    Abstract: Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD?1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD?(?O(T))10(K(2)(T))2/(?O(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth ?O, gap maximum ?O, and kernel K(2).
    Type: Application
    Filed: July 16, 2010
    Publication date: November 11, 2010
    Applicant: The United States of America as represented by the Secretary of the Navy
    Inventors: Yehoshua Dan Agassi, Daniel E. Oates
  • Patent number: 7761125
    Abstract: Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD?1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD?(?O(T))10(K(2)(T))2/(?O(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth ?O, gap maximum ?O, and kernel K(2).
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: July 20, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Yehoshua Dan Agassi, Daniel E. Oates
  • Patent number: 7521708
    Abstract: More sensitive (especially due to reduced interference of flux noise) than a conventional SQUID, an inventive SQUID's major component is a hollow cylindric structure comprising one or more annular Josephson junctions. Each annular Josephson junction is defined by two superconductive annuli and an interposed non-superconductive annulus. Inventive practice is variable, e.g., in terms of number and/or spacing of Josephson junctions, and/or as having one or more shunts connecting two or more Josephson junctions, and/or as having one or more vortices each threaded through a Josephson junction. The inventive cylindric structure is positioned proximate a magnetic field of interest so that the latter is aligned with the longitudinal axis of the former.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: April 21, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Yehoshua Dan Agassi
  • Patent number: 6961597
    Abstract: Based on its superconductive properties relating to “nonlineanty,” a conventional HTS strip is divisible into three “domains,” namely, a medial domain and two lateral domains. The nonlinearity associated with the conventional strip's medial domain is considerably greater than that which is associated with its lateral domains. Similarly divisible into a medial domain and two lateral domains, the present invention's HTS strip uniquely exploits these physical distinctions by causing more (e.g., most) of the current that it conducts to be conducted by its lateral domains. Various inventive designs accomplish this through narrowing or interruption/punctuation (e.g., via holes and/or trenches) or degradation, or some combination thereof, of the medial domain. By thus “re-proportioning” current conduction as compared with a conventional strip, an inventive strip succeeds in “re-proportioning” the associated nonlinearities.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Yehoshua Dan Agassi
  • Patent number: 6635368
    Abstract: A film-based HTS device comprises a substrate and a superconducting film. A peripheral portion of the film is a-axis-aligned material which is so situated on the substrate as to describe a-b planar barriers which are perpendicular to the substrate and which in parallel fashion border upon the entire periphery of the film. The a-b planar barriers serve to block vortices which nucleate at the film's periphery, thereby attenuating the overall vortex activity associated with the film, thereby attenuating the ELF and white noise which are normally prevalent in superconductor devices. Effectiveness in terms of arresting vortex motion may be increased by providing an interior film portion which is also a-axis-aligned material. It may be preferable to provide an interior film portion which is c-axis-aligned material, since this is easier to make and the a-axis-aligned peripheral portion of the film will be sufficiently effective in terms of “pinning” the vortices.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: October 21, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Yehoshua Dan Agassi