Patents by Inventor Yekutiel Josefsberg

Yekutiel Josefsberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210208272
    Abstract: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase-noise frequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 8, 2021
    Inventors: Tal Lavian, Yekutiel Josefsberg, Eran Dor
  • Patent number: 10598764
    Abstract: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: March 24, 2020
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Patent number: 10404261
    Abstract: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
    Type: Grant
    Filed: December 16, 2018
    Date of Patent: September 3, 2019
    Inventors: Yekutiel Josefsberg, Tal Lavian, Eran Dor
  • Patent number: 10348313
    Abstract: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method for autonomous vehicle is also disclosed.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: July 9, 2019
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Publication number: 20190128998
    Abstract: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Patent number: 10205457
    Abstract: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase-noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system helps in detecting and classifying human beings present on the road clearly and in time so as to provide a corrective input to the autonomous vehicle timely.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: February 12, 2019
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Publication number: 20180019755
    Abstract: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method for autonomous vehicle is also disclosed.
    Type: Application
    Filed: August 7, 2017
    Publication date: January 18, 2018
    Inventors: Yekutiel Josefsberg, TaI Lavian
  • Patent number: 9831881
    Abstract: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method for autonomous vehicle is also disclosed.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: November 28, 2017
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Publication number: 20170302282
    Abstract: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method or autonomous vehicle is also disclosed.
    Type: Application
    Filed: July 3, 2017
    Publication date: October 19, 2017
    Inventors: Yekutiel Josefsberg, Tal Lavian
  • Patent number: 9762251
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: September 12, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Patent number: 9729158
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: August 8, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Patent number: 9705511
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: July 11, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Patent number: 9660655
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: May 23, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Publication number: 20170099057
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 6, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Publication number: 20170099058
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 6, 2017
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Publication number: 20160373117
    Abstract: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
    Type: Application
    Filed: August 5, 2016
    Publication date: December 22, 2016
    Inventors: Yekutiel Josefsberg, Tal I. Lavian
  • Patent number: 7809324
    Abstract: Method and apparatus for determining the efficiency of publicity and/or broadcasted programs, according to which, when a TV converter or FM radio is operated, the frequency of the broadcast channel received at the moment is determined either directly from the TV converter or FM radio display or by extracting the LO frequency of the TV converter or FM radio. The frequency is transformed to a digital word and when the information as to the amount of watching and listening of a given publicity and/or broadcasted program or publicities is desired, a request for the information is sent and when received, the memorized digital words corresponding to the frequency of the broadcast channel received at the moment is transmitted.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 5, 2010
    Assignee: Future Wireless Ltd.
    Inventor: Yekutiel Josefsberg
  • Publication number: 20080233863
    Abstract: Method and apparatus for determining the efficiency of publicity and/or broadcasted programs, according to which, when a TV converter or FM radio is operated, the frequency of the broadcast channel received at the moment is determined either directly from the TV converter or FM radio display or by extracting the LO frequency of the TV converter or FM radio.
    Type: Application
    Filed: January 13, 2005
    Publication date: September 25, 2008
    Applicant: FUTURE WIRELESS LTD.
    Inventor: Yekutiel Josefsberg
  • Patent number: 4614917
    Abstract: There is provided an indirect frequency synthesizer in the millimeter wave frequency range of 36 to 38.6 GHz. The synthesizer comprises a high performance frequency translation loop for operation in the microwave frequency range and contains a voltage-controlled oscillator, an automatic loop gain correction system and a sophisticated lock search system. The frequency translation loop is operable under a variety of conditions (temperature etc.) and overcomes the considerable difficulties which exist in this frequency range such as maintenance of constant optimum loop parameters, thus making it possible to utilize the entire frequency tuning range of the millimeter wave oscillator. As a result, the synthesizer has very satisfactory characteristics as regards noise and spurious frequencies products.
    Type: Grant
    Filed: April 17, 1985
    Date of Patent: September 30, 1986
    Assignee: Tadiran Ltd.
    Inventors: Michael Zelitzki, Yekutiel Josefsberg