Patents by Inventor Yelena Bronevetsky

Yelena Bronevetsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11666912
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: June 6, 2023
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Patent number: 11273177
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 15, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Lavieu, Annamaria Mocciaro
  • Publication number: 20210349075
    Abstract: Methods are provided for the assay of secreted biomolecules using automated detection and characterization of micro-objects in a microfluidic device. The biomolecules can be secreted by cells, particularly immunological cells, such as T cells. The biomolecules being assayed can include cytokines, growth factors, and the like. Methods are also provided for assaying the cytotoxicity of a cell with respect to another, target cell. Also provided are kits and non-transitory computer-readable media in which programs are stored for causing a system comprising a computer to perform automated methods for detecting secreted biomolecules and/or cytotoxicity in a microfluidic device.
    Type: Application
    Filed: April 27, 2021
    Publication date: November 11, 2021
    Inventors: Yelena BRONEVETSKY, Annamaria MOCCIARO, Guido K. STADLER, Peter J. BEEMILLER, Natalie C. MARKS, Duane SMITH, Vincent Haw Tien PAI, Jason M. MCEWEN, Amanda L. GOODSELL, John A. TENNEY, Thomas M. VETTERLI, Hansohl E. Kim
  • Publication number: 20210087252
    Abstract: This disclosure relates to the production and use of an isolated, purified and/or recombinant T cell receptor (TCR) that specifically binds to a mutant IDH1 protein, or a fragment thereof, wherein the mutant IDH1 protein or fragment thereof comprises an R132H mutation.
    Type: Application
    Filed: August 7, 2020
    Publication date: March 25, 2021
    Applicants: Berkeley Lights, Inc., The Regents of the University of California
    Inventors: Hideho Okada, Duane Smith, Payal Watchmaker, Yelena Bronevetsky, Ryosuke Naka, Guido K. Stadler, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20200299351
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects. Described herein are surface modifying and surface functionalizing reagents, preparation thereof, and methods for modifying surfaces to activate T Lymphocytes.
    Type: Application
    Filed: January 15, 2020
    Publication date: September 24, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. Beemiller, Alexander J. Mastroianni, Shao Ning Pei, Randall D. Lowe, JR., Annamaria Mocciaro, Kevin D. Loutherback, Yelena Bronevetsky, Guido K. Stadler, Andrew W. McFarland, Kevin T. Chapman, Duane Smith, Natalie C. Marks, Amanda L. Goodsell
  • Publication number: 20200139362
    Abstract: Proto-antigen-presenting surfaces and related kits, methods, and uses are provided. The proto-antigen-presenting surface can comprise a plurality of primary activating molecular ligands comprising a major histocompatibility complex (MHC) molecule configured to bind to a T cell receptor (TCR) of a T cell and a plurality of of co-activating molecular ligands each including a TCR co-activating molecule or an adjunct TCR activating molecule, wherein an exchange factor is bound to the MHC molecules. Exchange factors include, e.g., dipeptides such as GL, GF, GR, etc. Proto-antigen-presenting surfaces can be used to rapidly prepare antigen-presenting surfaces comprising one or more peptide antigens of interest by contacting the proto-antigen-presenting surface with one or more peptide antigens so as to displace the exchange factor. As such, the disclosure facilitates rapid evaluation of the immunogenicity of peptide antigens for activating T lymphocytes.
    Type: Application
    Filed: October 17, 2019
    Publication date: May 7, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Shao Ning PEI, Randall D. LOWE, Jr., Annamaria MOCCIARO, Kevin D. LOUTHERBACK, Yelena BRONEVETSKY, Guido K. STADLER, Andrew W. MCFARLAND, Kevin T. CHAPMAN, Duane SMITH, Natalie C. MARKS, Amanda L. GOODSELL
  • Publication number: 20200123491
    Abstract: In biosciences and related fields, it can be useful to modify surfaces of apparatuses, devices, and materials that contact biomaterials such as biomolecules and biological micro-objects.
    Type: Application
    Filed: September 20, 2019
    Publication date: April 23, 2020
    Inventors: Peter J. BEEMILLER, Alexander J. MASTROIANNI, Randall D. LOWE, JR., Yelena BRONEVETSKY
  • Publication number: 20200115680
    Abstract: Methods of expanding T lymphocytes in a microfluidic device are provided. The methods can include introducing one or more T lymphocytes into a microfluidic device; contacting the one or more T lymphocytes with an activating agent; and perfusing culture medium through the microfluidic device for a period of time sufficient to allow the one or more T lymphocytes to undergo at least one round of mitotic cell division. The expansion can be non-specific or antigen-specific. T lymphocytes produced according to the disclosed methods are also provided, along with methods of treating cancer in a subject. The methods of treating cancer can include isolating T lymphocytes from a tissue sample obtained from the subject; expanding the isolated T lymphocytes in a microfluidic device; exporting the expanded T lymphocytes from the microfluidic device; and reintroducing the expanded T lymphocytes into the subject.
    Type: Application
    Filed: July 19, 2019
    Publication date: April 16, 2020
    Applicant: Berkeley Lights, Inc.
    Inventors: Yelena Bronevetsky, Xiaohua Wang, Peter J. Beemiller, Kristin G. Beaumont, Randall D. Lowe, JR., Alexander J. Mastroianni, Kevin T. Chapman, Natalie C. Marks
  • Publication number: 20190283026
    Abstract: Methods of sorting T lymphocytes in a microfluidic device are provided. The methods can include flowing a fluid sample comprising T lymphocytes through a region of a microfluidic device that contains an array of posts. The array of posts can be configured to have a critical size (Dc) that separates activated T lymphocytes from naïve T lymphocytes. Also provided are microfluidic devices having an array of posts configured to separate activated T lymphocytes from naïve T lymphocytes, compositions enriched for T lymphocytes, particularly activated T lymphocytes that are known to be reactive to an antigen of interest, and methods of treating subjects suffering from a pathogenic disorder or cancer by administering such compositions.
    Type: Application
    Filed: January 22, 2019
    Publication date: September 19, 2019
    Inventors: Kevin D. Loutherback, Yelena Bronevetsky, Peter J. Beemiller, Xiaohua Wang, Kevin T. Chapman
  • Publication number: 20180135011
    Abstract: Methods of expanding T lymphocytes in a microfluidic device are provided. The methods can include introducing one or more T lymphocytes into a microfluidic device; contacting the one or more T lymphocytes with an activating agent; and perfusing culture medium through the microfluidic device for a period of time sufficient to allow the one or more T lymphocytes to undergo at least one round of mitotic cell division. The expansion can be non-specific or antigen-specific. T lymphocytes produced according to the disclosed methods are also provided, along with methods of treating cancer in a subject. The methods of treating cancer can include isolating T lymphocytes from a tissue sample obtained from the subject; expanding the isolated T lymphocytes in a microfluidic device; exporting the expanded T lymphocytes from the microfluidic device; and reintroducing the expanded T lymphocytes into the subject.
    Type: Application
    Filed: November 2, 2017
    Publication date: May 17, 2018
    Inventors: Yelena Bronevetsky, Xiaohua Wang, Peter J. Beemiller, Kristin G. Beaumont, Randall D. Lowe, JR., Alexander J. Mastroianni, Kevin T. Chapman
  • Publication number: 20170224734
    Abstract: The present disclosure provides methods of preparing tumor infiltrating cells engineered to express a pro-inflammatory polypeptide. The pro-inflammatory polypeptide is expressed from the tumor infiltrating cell to counter a generally immunosuppressive state in and around tumors resulting from an imbalance between the number and activation state of immune effector cells versus those of suppressor cells. Delivering the proinflammatory polypeptide via expression from the TICs, as distinct from systemic administration, reduces side effects from increased inflammation at sides remote from a tumor to be treated.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 10, 2017
    Inventors: Kevin T Chapman, Xiaohua Wang, Xiao Guan Radstrom, Yelena Bronevetsky, Guido K Stadler, Gregory G Levieu, Annamaria Mocciaro