Patents by Inventor Yellapu V. Murty

Yellapu V. Murty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220235516
    Abstract: A new technique for treating non-PAN-based pre-cursor polymeric fibers, tows, yarns, and films has been created for use in making stabilized pre-cursor polymers. By applying stepwise or non-stepwise microwave and/or ultraviolet radiation to the pre-cursor polymeric fibers, tows, yarn, or films prior to the stabilization thereof, a reduction in time for the costly stabilization process is achieved. Application of this technique extends to less-costly production of carbon fibers, for uses in industries such as automotive, aviation, trains, medical, military, sporting goods, orthopedics, and other industries. The pre-cursor polymeric fibers, tows, yarns, or films may be a multi-component polymer composite comprised of a non-PAN-based polymeric fiber, tow, yarn, or film and at least one or more constituent materials. Carbonization of such pre-cursor polymeric fibers, tows, yarns, or films results in less-costly carbon fibers that perform equally, if not better, than traditional costly PAN-based carbon fibers.
    Type: Application
    Filed: June 10, 2020
    Publication date: July 28, 2022
    Applicant: University of Virginia Patent Foundation
    Inventors: Xiaodong Li, Zan Gao, Jiadeng Zhu, Yellapu V. Murty, Kenneth Brown, Clifton Bumgardner
  • Patent number: 9921037
    Abstract: Structures based upon periodic cellular materials that provide a potential for defeating combinations of both air blast loading and ballistic attack either sequentially or simultaneously, or combination of both. The cellular structures may also be configured to meet the stiffness and strength support requirements of particular vehicle or other applications, systems or structures. The armor is therefore potentially able to support normal service loads and defeat blast and ballistic threats when necessary. The structure provides for using efficient load support capabilities of the material (without a high armor protection level) in low threat conditions, as well as the ability to modify the system to increase its level protection to a desired or required level. This would reduce the weight of the protection system in normal (low threat) conditions which reduces vehicle wear and tear, as well as cost savings in fabrication of applicable structures or systems.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: March 20, 2018
    Assignee: University of Virginia Patent Foundation
    Inventors: Haydn N. G. Wadley, Yellapu V. Murty, Tyrone Jones, Rahul Gupta, Matthew Burkins
  • Patent number: 8650756
    Abstract: Methods and systems to manufacture bonded corrugation truss-based structures. This allows the ability to change the dimensions of the individual structural features of the corrugations, i.e. thickness of the core, face sheet thickness, relative density of the core, and the alloys. The nodal design which provides ideal stress/strain distribution for in-plane and out-off plane loading. The node has a curved/smooth triple point intersection which in turn can provide best load transfer interface with high integrity/toughness. The bonded corrugation truss based structure can be continuous to any length only limited by the volume of the extrusion billet and the press capacity. An aspect of the bonded corrugation structures may include friction stir welding of the face sheets or any fusion welding of panels with edge members for strengthening allows fabrication of panels of any width and length. Bonding panels enables the fabrication of structures of any width.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: February 18, 2014
    Assignee: University of Virginia Patent Foundation
    Inventors: Haydn N. G. Wadley, John J. Wetzel, Yellapu V. Murty
  • Patent number: 8360361
    Abstract: Methods and apparatuses for passive jet blast deflection or the like. Use of the passive jet blast deflector permits the efficient dispersal of a fast moving local heat source into the environment through passive means while providing a high strength structure. The jet blast deflector system may include a first plate, a second plate, and a cellular core disposed between them adapted to allow cooling ambient air to flow through the cellular core, wherein the first plate, second plate, and core are all seamlessly coupled heat pipes that form a single vapor core to facilitate the spreading and even storing of thermal energy. An ejector plate may be attached to the top of the second plate to create a low pressure zone as the heat source passes over it, thereby pulling the ambient air through the cellular core, facilitating the removal the thermal energy from the system.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: January 29, 2013
    Assignee: University of Virginia Patent Foundation
    Inventors: Haydn N. G. Wadley, Douglas T. Queheillalt, Hossein Haj-Hariri, Anthony G. Evans, George P. Peterson, Robert Kurtz, G. Douglas Long, Yellapu V. Murty
  • Publication number: 20110283873
    Abstract: Structures based upon periodic cellular materials that provide a potential for defeating combinations of both air blast loading and ballistic attack either sequentially or simultaneously, or combination of both. The cellular structures may also be configured to meet the stiffness and strength support requirements of particular vehicle or other applications, systems or structures. The armor is therefore potentially able to support normal service loads and defeat blast and ballistic threats when necessary. The structure provides for using efficient load support capabilities of the material (without a high armor protection level) in low threat conditions, as well as the ability to modify the system to increase its level protection to a desired or required level. This would reduce the weight of the protection system in normal (low threat) conditions which reduces vehicle wear and tear, as well as cost savings in fabrication of applicable structures or systems.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 24, 2011
    Applicants: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, DEPARTMENT OF THE ARMY, CELLULAR MATERIALS INTERNATIONAL, INC.
    Inventors: Haydn N.G. Wadley, Yellapu V. Murty, Tyrone Jones, Rahul Gupta, Matthew Burkins
  • Publication number: 20110042512
    Abstract: Methods and apparatuses for passive jet blast deflection or the like. Use of the passive jet blast deflector permits the efficient dispersal of a fast moving local heat source into the environment through passive means while providing a high strength structure. The jet blast deflector system may include a first plate, a second plate, and a cellular core disposed between them adapted to allow cooling ambient air to flow through the cellular core, wherein the first plate, second plate, and core are all seamlessly coupled heat pipes that form a single vapor core to facilitate the spreading and even storing of thermal energy. An ejector plate may be attached to the top of the second plate to create a low pressure zone as the heat source passes over it, thereby pulling the ambient air through the cellular core, facilitating the removal the thermal energy from the system.
    Type: Application
    Filed: May 23, 2007
    Publication date: February 24, 2011
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Haydn N.G. Wadley, Douglas T. Queheillalt, Hossein Haj-Hariri, Anthony G. Evans, George P. Peterson, Robert Kurtz, G. Douglas Long, Yellapu V. Murty
  • Publication number: 20090286100
    Abstract: Methods and systems to manufacture bonded corrugation truss-based structures. This allows the ability to change the dimensions of the individual structural features of the corrugations, i.e. thickness of the core, face sheet thickness, relative density of the core, and the alloys. The nodal design which provides ideal stress/strain distribution for in-plane and out-off plane loading. The node has a curved/smooth triple point intersection which in turn can provide best load transfer interface with high integrity/toughness. The bonded corrugation truss based structure can be continuous to any length only limited by the volume of the extrusion billet and the press capacity. An aspect of the bonded corrugation structures may include friction stir welding of the face sheets or any fusion welding of panels with edge members for strengthening allows fabrication of panels of any width and length. Bonding panels enables the fabrication of structures of any width.
    Type: Application
    Filed: June 5, 2009
    Publication date: November 19, 2009
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Haydn N.G. Wadley, John J. Wetzel, Yellapu V. Murty
  • Patent number: 4380262
    Abstract: An apparatus useful for the production of wide amorphous or polycrystalline metal foils of substantially uniform thickness by the double roller chill quenching method comprises a fixed roller member and a spring-loaded movable roller member mounted on a set of mounting rails. The movable roller member is maintained at a selectably adjustable minimum spacing from the fixed roller member and is free to move away from this position of minimum spacing to accommodate forces tending to displace the rollers from one another. A spring urges the movable roller toward the fixed roller and provides for selectable adjustment of the restoring force urging the rollers together.
    Type: Grant
    Filed: October 27, 1980
    Date of Patent: April 19, 1983
    Assignee: GTE Laboratories Incorporated
    Inventors: Ralph P. I. Adler, Thomas J. Gorsuch, Yellapu V. Murty, Alexander R. Woronicki