Patents by Inventor Yen-Hui Liu

Yen-Hui Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11984465
    Abstract: The present disclosure relates to a CMOS image sensor having a multiple deep trench isolation (MDTI) structure, and an associated method of formation. In some embodiments, the image sensor comprises a boundary deep trench isolation (BDTI) structure disposed at boundary regions of a pixel region surrounding a photodiode. The BDTI structure has a ring shape from a top view and two columns surrounding the photodiode with the first depth from a cross-sectional view. A multiple deep trench isolation (MDTI) structure is disposed at inner regions of the pixel region overlying the photodiode, the MDTI structure extending from the back-side of the substrate to a second depth within the substrate smaller than the first depth. The MDTI structure has three columns with the second depth between the two columns of the BDTI structure from the cross-sectional view. The MDTI structure is a continuous integral unit having a ring shape.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: May 14, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei Chuang Wu, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Jen-Cheng Liu, Yen-Ting Chiang, Chun-Yuan Chen, Shen-Hui Hong
  • Patent number: 11948949
    Abstract: In some embodiments, the present disclosure relates to a device having a semiconductor substrate including a frontside and a backside. On the frontside of the semiconductor substrate are a first source/drain region and a second source/drain region. A gate electrode is arranged on the frontside of the semiconductor substrate and includes a horizontal portion, a first vertical portion, and a second vertical portion. The horizontal portion is arranged over the frontside of the semiconductor substrate and between the first and second source/drain regions. The first vertical portion extends from the frontside towards the backside of the semiconductor substrate and contacts the horizontal portion of the gate electrode structure. The second vertical portion extends from the frontside towards the backside of the semiconductor substrate, contacts the horizontal portion of the gate electrode structure, and is separated from the first vertical portion by a channel region of the substrate.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Hsiao-Hui Tseng, Jen-Cheng Liu, Jhy-Jyi Sze, Shyh-Fann Ting, Wei Chuang Wu, Yen-Ting Chiang, Chia Ching Liao, Yen-Yu Chen
  • Patent number: 9391276
    Abstract: A conjugated polymer-based optoelectronic material includes: an optoelectronic conjugated polymer having a main chain and side chains; and an organic diluent which is at least partially miscible with the conjugated polymer. Molecules of the organic diluent physically react with the side chains of the conjugated polymer to form hydrogen bonds therebetween, thereby generating molecular constraints in the conjugated polymer to suppress molecular deformation of the conjugated polymer that occurs soon after the conjugated polymer is excited.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 12, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Arnold Chang-Mou Yang, Yen-Hui Liu, Chih-Chia Cheng, Cheng-Chung Huang
  • Publication number: 20160043322
    Abstract: A conjugated polymer-based optoelectronic material includes: an optoelectronic conjugated polymer having a main chain and side chains; and an organic diluent which is at least partially miscible with the conjugated polymer. Molecules of the organic diluent physically react with the side chains of the conjugated polymer to form hydrogen bonds therebetween, thereby generating molecular constraints in the conjugated polymer to suppress molecular deformation of the conjugated polymer that occurs soon after the conjugated polymer is excited.
    Type: Application
    Filed: November 19, 2014
    Publication date: February 11, 2016
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Arnold Chang-Mou YANG, Yen-Hui LIU, Chih-Chia CHENG, Cheng-Chung HUANG
  • Patent number: 8568570
    Abstract: A method of fabricating a sheet or a fabric with crystalline TiO2 nano-particles includes providing a polymer material as a support, and then synthesizing the crystalline TiO2 nano-particles with immobilizing them on a surface of the support, followed by forming the fabric or the sheet. The fabric is a textile or a nonwoven fabric. A type of the support is a fiber or a sheet type. The synthesizing of the crystalline TiO2 nano-particles is performed by occurring a sol-gel reaction under a microwave irradiation, wherein a TiO2 precursor, water, an alcohol, and an ionic liquid applied in the sol-gel reaction during the synthesizing.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: October 29, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Min-Chao Chang, Hsin Shao, Meng-Shun Huang, Li-Ching Chung, Po-I Liu, Arnold Chang-Mou Yang, Yen-Hui Liu
  • Patent number: 8349141
    Abstract: A method for one step synthesizing and immobilzing crystalline titanium dioxide (TiO2) nano-particles simultaneously on a polymer support and a use thereof are provided. The method includes adding TiO2 precursor, water, alcohol and an ionic liquid in a sol-gel reaction under microwave irradiation, so that a plurality of TiO2 crystalline nano-particles are synthesized and immobilized on the polymer support simultaneously.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 8, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Min-Chao Chang, Hsin Shao, Meng-Shun Huang, Li-Ching Chung, Po-I Liu, Arnold Chang-Mou Yang, Yen-Hui Liu
  • Publication number: 20110089018
    Abstract: A method for one step synthesizing and immobilzing crystalline titanium dioxide (TiO2) nano-particles simultaneously on a polymer support and a use thereof are provided. The method includes adding TiO2 precursor, water, alcohol and an ionic liquid in a sol-gel reaction under microwave irradiation, so that a plurality of TiO2 crystalline nano-particles are synthesized and immobilized on the polymer support simultaneously.
    Type: Application
    Filed: March 17, 2010
    Publication date: April 21, 2011
    Applicant: Industrial Technology Research Institute
    Inventors: Min-Chao Chang, Hsin Shao, Meng-Shun Huang, Li-Ching Chung, Po-I Liu, Arnold Chang-Mou Yang, Yen-Hui Liu