Patents by Inventor Yen-Po Lin

Yen-Po Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210376094
    Abstract: A method includes depositing a dummy semiconductor layer and a first semiconductor layer over a substrate, forming spacers on sidewalls of the dummy semiconductor layer, forming a first epitaxial material in the substrate, exposing the dummy semiconductor layer and the first epitaxial material, where exposing the dummy semiconductor layer and the first epitaxial material includes thinning a backside of the substrate, etching the dummy semiconductor layer to expose the first semiconductor layer, where the spacers remain over and in contact with end portions of the first semiconductor layer while etching the dummy semiconductor layer, etching portions of the first semiconductor layer using the spacers as a mask, and replacing a second epitaxial material and the first epitaxial material with a backside via, the backside via being electrically coupled to a source/drain region of a first transistor.
    Type: Application
    Filed: March 12, 2021
    Publication date: December 2, 2021
    Inventors: Yen-Po Lin, Wei-Yang Lee, Yuan-Ching Peng, Chia-Pin Lin, Jiun-Ming Kuo
  • Patent number: 10965438
    Abstract: A signal receiving circuit, a memory storage device and a signal receiving method are provided. The signal receiving circuit includes an equalizer module, a clock and data recovery (CDR) circuit and a controller. The equalizer module is configured to receive a first signal and compensate the first signal to generate a second signal. The CDR circuit is configured to perform a phase locking on the second signal. The controller is configured to open or close a signal pattern filter of the CDR circuit according to the second signal, wherein the signal pattern filter is configured to filter a signal having a specific pattern in the second signal.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 30, 2021
    Assignee: PHISON ELECTRONICS CORP.
    Inventors: Shih-Yang Sun, Sheng-Wen Chen, Yen-Po Lin, Bo-Jing Lin, Po-Min Cheng
  • Publication number: 20210050597
    Abstract: Provided is anode active material for use in a lithium ion battery, wherein the anode active material is capable of reversibly storing lithium ions therein up to a maximum lithium storage capacity Cmax during a charge or discharge of the battery and the anode active material comprises an amount of solid-electrolyte interphase (SEI) on a surface or in an internal structure of the anode active material wherein the SEI is pre-formed prior to incorporating the anode active material in an anode electrode of the battery. Also provided is a method of producing the pre-formed SEI substances in the anode material; e.g. through repeated lithiation/delithiation procedures.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 18, 2021
    Inventors: Yen-Po Lin, Yu-Chan Yen, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20210013490
    Abstract: Provided is a prelithiated anode active material particle for use in a lithium-ion battery, the particle is capable of reversibly storing lithium ions therein during a charge or discharge of the battery and comprises an amount of lithium from 1% to 100% of a maximum lithium content that can be contained in the anode active material particle, having a first lithium concentration C1 near a particle surface and a second lithium concentration C2 inside the particle and away from the particle surface and wherein C1<C2.
    Type: Application
    Filed: July 8, 2019
    Publication date: January 14, 2021
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yen-Po Lin, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20200358088
    Abstract: Provided is a method of producing multiple particulates, the method comprising: (a) dispersing multiple primary particles of an anode active material, having a particle size from 2 nm to 20 ?m, and particles of a polymer foam material, having a particle size from 50 nm to 20 ?m, and an optional adhesive or binder in a liquid medium to form a slurry; and (b) shaping the slurry and removing the liquid medium to form the multiple particulates having a diameter from 100 nm to 50 ?m; wherein at least one of the multiple particulates comprises a polymer foam material having pores and a single or a plurality of the primary particles embedded in or in contact with the polymer foam material, wherein the primary particles have a total solid volume Va, and the pores have a total pore volume Vp, and the volume ratio Vp/Va is from 0.1/1.0 to 10/1.
    Type: Application
    Filed: May 6, 2019
    Publication date: November 12, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Yen-Po Lin, Sheng-Yi Lu, Bor Z. Jang
  • Publication number: 20200358081
    Abstract: Provided is an anode particulate for a lithium battery, the particulate comprising a polymer foam material having pores and a single or a plurality of primary particles of an anode active material embedded in or in contact with said polymer foam material, wherein said primary particles of anode active material have a total solid volume Va, and said pores have a total pore volume Vp, and the volume ratio Vp/Va is from 0.1/1.0 to 10/1.
    Type: Application
    Filed: May 6, 2019
    Publication date: November 12, 2020
    Applicant: Nanotek Instruments, Inc.
    Inventors: Yi-jun Lin, Yen-Po Lin, Sheng-Yi Lu, Bor Z. Jang
  • Patent number: 10727002
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising a cathode active material that contains a conductive carbon material and a porphyrin compound, wherein the porphyrin compound is bonded to or supported by the carbon material to form a redox pair for pseudocapacitance, wherein the carbon material is selected from activated carbon, activated carbon black, expanded graphite flakes, exfoliated graphite worms, carbon nanotube, carbon nanofiber, carbon fiber, a combination thereof; (B) a battery-like anode comprising lithium metal, lithium metal alloy, or a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: July 28, 2020
  • Patent number: 10566668
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (a) a pseudocapacitance-like cathode comprising a cathode active material that contains both graphene sheets and a porphyrin compound, including porphyrin or a porphyrin complex, wherein the porphyrin compound is bonded to or supported by primary surfaces of graphene sheets to form a redox pair for pseudocapacitance; (b) a battery-like anode comprising an anode active material selected from sodium metal, a sodium metal alloy, a sodium intercalation compound, a sodium-containing compound, or a combination thereof, and (c) a sodium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: February 18, 2020
  • Publication number: 20190108948
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (A) a pseudocapacitance cathode comprising a cathode active material that contains a conductive carbon material and a porphyrin compound, wherein the porphyrin compound is bonded to or supported by the carbon material to form a redox pair for pseudocapacitance, wherein the carbon material is selected from activated carbon, activated carbon black, expanded graphite flakes, exfoliated graphite worms, carbon nanotube, carbon nanofiber, carbon fiber, a combination thereof; (B) a battery-like anode comprising lithium metal, lithium metal alloy, or a prelithiated anode active material (e.g. prelithiated Si, SiO, Sn, SnO2, etc.), and (C) a lithium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 11, 2019
  • Publication number: 20190109358
    Abstract: Provided is an internal hybrid electrochemical cell comprising: (a) a pseudocapacitance-like cathode comprising a cathode active material that contains both graphene sheets and a porphyrin compound, including porphyrin or a porphyrin complex, wherein the porphyrin compound is bonded to or supported by primary surfaces of graphene sheets to form a redox pair for pseudocapacitance; (b) a battery-like anode comprising an anode active material selected from sodium metal, a sodium metal alloy, a sodium intercalation compound, a sodium-containing compound, or a combination thereof, and (c) a sodium-containing electrolyte in physical contact with the anode and the cathode; wherein the cathode active material has a specific surface area no less than 100 m2/g which is in direct physical contact with the electrolyte.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 11, 2019
  • Patent number: 9917088
    Abstract: A device comprises a substrate comprising a first portion and a second portion separated by an isolation region, a first gate structure over the first portion, a first drain/source region and a second drain/source region in the first portion and on opposite sides of the first gate structure, wherein the first drain/source region and the second drain/source have concave surfaces, a second gate structure over the second portion and a third drain/source region and a fourth drain/source region in the second portion and on opposite sides of the second gate structure, wherein the third drain/source region and the fourth drain/source have the concave surfaces.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 13, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Yen-Po Lin, Yu-Shan Lu, Che-Yuan Hsu
  • Publication number: 20170077096
    Abstract: A device comprises a substrate comprising a first portion and a second portion separated by an isolation region, a first gate structure over the first portion, a first drain/source region and a second drain/source region in the first portion and on opposite sides of the first gate structure, wherein the first drain/source region and the second drain/source have concave surfaces, a second gate structure over the second portion and a third drain/source region and a fourth drain/source region in the second portion and on opposite sides of the second gate structure, wherein the third drain/source region and the fourth drain/source have the concave surfaces.
    Type: Application
    Filed: November 28, 2016
    Publication date: March 16, 2017
    Inventors: Ming-Yuan Wu, Yen-Po Lin, Yu-Shan Lu, Che-Yuan Hsu
  • Patent number: 9508718
    Abstract: A device comprises a substrate comprising a first portion and a second portion separated by an isolation region, a first gate structure over the first portion, a first drain/source region and a second drain/source region in the first portion and on opposite sides of the first gate structure, wherein the first drain/source region and the second drain/source have concave surfaces, a second gate structure over the second portion and a third drain/source region and a fourth drain/source region in the second portion and on opposite sides of the second gate structure, wherein the third drain/source region and the fourth drain/source have the concave surfaces.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: November 29, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Yen-Po Lin, Yu-Shan Lu, Che-Yuan Hsu
  • Publication number: 20160190133
    Abstract: A device comprises a substrate comprising a first portion and a second portion separated by an isolation region, a first gate structure over the first portion, a first drain/source region and a second drain/source region in the first portion and on opposite sides of the first gate structure, wherein the first drain/source region and the second drain/source have concave surfaces, a second gate structure over the second portion and a third drain/source region and a fourth drain/source region in the second portion and on opposite sides of the second gate structure, wherein the third drain/source region and the fourth drain/source have the concave surfaces.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 30, 2016
    Inventors: Ming-Yuan Wu, Yen-Po Lin, Yu-Shan Lu, Che-Yuan Hsu
  • Patent number: 8712625
    Abstract: An automatic search system and a method for assisting a mobile apparatus to search for a matching device are provided. The automatic search method includes the following steps. First, N sets of consecutive images are captured at N time points respectively when the mobile apparatus moves along a first direction. The N is a positive integer greater than 1. Next, the N sets of consecutive images are received, and several image features of the N sets of images are compared, so as to determine accordingly whether the matching device exists in the first direction. If it is determined that the matching device exists, a route signal and an adjustment signal are generated. Next, according to the route signal, the mobile apparatus is controlled to move to an adjacent position of the matching device. Also, according to the adjustment signal, the mobile apparatus is controlled to be combined with the matching device.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: April 29, 2014
    Assignee: National Tsing Hua University
    Inventors: Hung-Yin Tsai, Ming-Hwei Perng, Yen-Wen Huang, Yen-Po Lin
  • Publication number: 20110046838
    Abstract: An automatic search system and a method for assisting a mobile apparatus to search for a matching device are provided. The automatic search method includes the following steps. First, N sets of consecutive images are captured at N time points respectively when the mobile apparatus moves along a first direction. The N is a positive integer greater than 1. Next, the N sets of consecutive images are received, and several image features of the N sets of images are compared, so as to determine accordingly whether the matching device exists in the first direction. If it is determined that the matching device exists, a route signal and an adjustment signal are generated. Next, according to the route signal, the mobile apparatus is controlled to move to an adjacent position of the matching device. Also, according to the adjustment signal, the mobile apparatus is controlled to be combined with the matching device.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 24, 2011
    Inventors: Hung-Yin Tsai, Ming-Hwei Perng, Yen-Wen Huang, Yen-Po Lin
  • Patent number: 6887310
    Abstract: A method of preparing high-k gate dielectrics by liquid phase anodic oxidation, which first produces a metallic film on the surface of a clean silicon substrate, next oxidizes the metallic film to form a metallic oxide as a gate oxidizing layer by liquid phase anodic oxidation, then promoting quality of the gate oxidizing layer by processing a step of thermal annealing. With this oxidation, a gate dielectric layer of high quality, high-k and ultrathin equivalent oxide thickness (EOT) can be produced, which can be integrated into a complementary metal oxide semiconductor (CMOS) production process directly.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: May 3, 2005
    Assignee: National Taiwan University
    Inventors: Jenn-Gwo Hwu, Yen-Po Lin, Szu-Wei Huang
  • Publication number: 20040011656
    Abstract: A method of high-k gate dielectrics prepared by liquid phase anodic oxidation, which first produces a metallic film on the surface of a clean silicon substrate, next to oxidize said metallic film to form a metallic oxide as a gate oxidizing layer by liquid phase anodic oxidation, then to promote quality of said gate oxidizing layer by processing a step of thermal annealing. With this oxidation, a gate dielectric layer of high quality, high-k and ultrathin equivalent oxide thickness (EOT) can be produced, which can be integrated to complementary metal oxide semiconductor (CMOS) process directly.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 22, 2004
    Inventors: Jenn-Gwo Hwu, Yen-Po Lin, Szu-Wei Huang