Patents by Inventor Yen T. Phung

Yen T. Phung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9803022
    Abstract: Described herein is the use of rabbit hybridoma technology, along with a panel of truncated mesothelin domain fragments, to identify anti-mesothelin mAbs that bind specific regions of mesothelin. In one aspect of the present disclosure, the rabbit mAbs bind an epitope that is not part of Region I. In particular, the identified mAbs (YP187, YP223, YP218 and YP3) bind either Region II (391-486), Region III (487-581) or a native conformation of mesothelin with subnanomolar affinity. These antibodies do not compete for binding with the mesothelin-specific immunotoxin SS1P or mesothelin-specific antibody MORAb-009. In another aspect, disclosed is a high-affinity rabbit mAb that binds Region I of mesothelin (YP158). YP158 binds native mesothelin protein in cancer cells and tissues with high affinity and specificity.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 31, 2017
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Ira H. Pastan, Yen T. Phung, Yifan Zhang, Wei Gao, Raffit Hassan
  • Publication number: 20160229919
    Abstract: Described herein is the use of rabbit hybridoma technology, along with a panel of truncated mesothelin domain fragments, to identify anti-mesothelin mAbs that bind specific regions of mesothelin. In one aspect of the present disclosure, the rabbit mAbs bind an epitope that is not part of Region I. In particular, the identified mAbs (YP187, YP223, YP218 and YP3) bind either Region II (391-486), Region III (487-581) or a native conformation of mesothelin with subnanomolar affinity. These antibodies do not compete for binding with the mesothelin-specific immunotoxin SS1P or mesothelin-specific antibody MORAb-009. In another aspect, disclosed is a high-affinity rabbit mAb that binds Region I of mesothelin (YP158). YP158 binds native mesothelin protein in cancer cells and tissues with high affinity and specificity.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 11, 2016
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Ira H. Pastan, Yen T. Phung, Yifan Zhang, Wei Gao, Raffit Hassan
  • Patent number: 9409992
    Abstract: Described herein is the use of rabbit hybridoma technology, along with a panel of truncated mesothelin domain fragments, to identify anti-mesothelin mAbs that bind specific regions of mesothelin. In one aspect of the present disclosure, the rabbit mAbs bind an epitope that is not part of Region I. In particular, the identified mAbs (YP187, YP223, YP218 and YP3) bind either Region II (391-486), Region III (487-581) or a native conformation of mesothelin with subnanomolar affinity. These antibodies do not compete for binding with the mesothelin-specific immunotoxin SS1P or mesothelin-specific antibody MORAb-009. In another aspect, disclosed is a high-affinity rabbit mAb that binds Region I of mesothelin (YP158). YP158 binds native mesothelin protein in cancer cells and tissues with high affinity and specificity.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 9, 2016
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Ira H. Pastan, Yen T. Phung, Yifan Zhang, Wei Gao, Raffit Hassan
  • Patent number: 9409994
    Abstract: Described herein is the identification of a panel of high affinity monoclonal antibodies that bind GPC3. The disclosed antibodies recognize native GPC3 on the surface of cancer cells, as well as soluble GPC3. The highest affinity antibody (YP7) was further characterized and shown to be highly sensitive in that it was capable of detecting cancer cells with low expression of GPC3. YP7 also exhibited significant HCC tumor growth inhibition in vivo. Immunotoxins comprising the antibodies disclosed herein fused to PE38 exhibited very high binding affinity for GPC3-expressing cells and significantly inhibited GPC3-expressing cancer cell growth. Thus, the high-affinity monoclonal antibodies disclosed herein can be used for the diagnosis and treatment of GPC3-expressing cancers.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 9, 2016
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Yen T. Phung, Wei Gao, Yifan Zhang
  • Publication number: 20150252118
    Abstract: Described herein is the use of rabbit hybridoma technology, along with a panel of truncated mesothelin domain fragments, to identify anti-mesothelin mAbs that bind specific regions of mesothelin. In one aspect of the present disclosure, the rabbit mAbs bind an epitope that is not part of Region I. In particular, the identified mAbs (YP187, YP223, YP218 and YP3) bind either Region II (391-486), Region III (487-581) or a native conformation of mesothelin with subnanomolar affinity. These antibodies do not compete for binding with the mesothelin-specific immunotoxin SS 1P or mesothelin-specific antibody MORAb-009. In another aspect, disclosed is a high-affinity rabbit mAb that binds Region I of mesothelin (YP158). YP158 binds native mesothelin protein in cancer cells and tissues with high affinity and specificity.
    Type: Application
    Filed: August 16, 2013
    Publication date: September 10, 2015
    Inventors: Mitchell Ho, Ira H. Pastan, Yen T. Phung, Yifan Zhang, Wei Gao, Raffit Hassan
  • Publication number: 20150147330
    Abstract: Described herein is the identification of a panel of high affinity monoclonal antibodies that bind GPC3. The disclosed antibodies recognize native GPC3 on the surface of cancer cells, as well as soluble GPC3. The highest affinity antibody (YP7) was further characterized and shown to be highly sensitive in that it was capable of detecting cancer cells with low expression of GPC3. YP7 also exhibited significant HCC tumor growth inhibition in vivo. Immunotoxins comprising the antibodies disclosed herein fused to PE38 exhibited very high binding affinity for GPC3-expressing cells and significantly inhibited GPC3-expressing cancer cell growth. Thus, the high-affinity monoclonal antibodies disclosed herein can be used for the diagnosis and treatment of GPC3-expressing cancers.
    Type: Application
    Filed: May 31, 2013
    Publication date: May 28, 2015
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Service
    Inventors: Mitchell Ho, Yen T. Phung, Wei Gao, Yifan Zhang