Patents by Inventor Yeng-Peng Wang

Yeng-Peng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999830
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 7, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8980753
    Abstract: A method for fabricating a metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a first transistor region and a second transistor region; forming a first metal-oxide semiconductor (MOS) transistor on the first transistor region and a second MOS transistor on the second transistor region, in which the first MOS transistor includes a first dummy gate and the second MOS transistor comprises a second dummy gate; forming a patterned hard mask on the second MOS transistor, in which the hard mask includes at least one metal atom; and using the patterned hard mask to remove the first dummy gate of the first MOS transistor.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: March 17, 2015
    Assignee: United Mircroelectronics Corp.
    Inventors: Yeng-Peng Wang, Chun-Hsien Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chan-Lon Yang
  • Patent number: 8952451
    Abstract: A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 10, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140127892
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 8, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8704294
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 22, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140103443
    Abstract: A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8551847
    Abstract: A method for forming a metal gate is provided. First, a dummy material is formed to completely cover a substrate. Second, a dopant is selectively implanted into the dummy material. Then, some of the dummy material is removed to expose part of the substrate and to form a dummy gate including a dopant region disposed between a first region and a second region. Later an interlayer dielectric layer is formed to surround the dummy gate. Next, a selective etching step is carried out to remove the first region to form a recess without substantially removing the dopant region. Afterwards, the recess is filled with a material set to form a metal gate.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: October 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chun-Yuan Wu, Chin-Cheng Chien, Chiu-Hsien Yeh, Yeng-Peng Wang
  • Publication number: 20120313178
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8298950
    Abstract: An exemplary method of etching sacrificial layer includes steps of: providing a substrate formed with a sacrificial layer and defined with a first region and a second region, the sacrificial layer disposed in both the first and second regions; forming a hard mask covering the first region while exposing the second region; performing a first etching process on the sacrificial layer to thin the sacrificial layer while forming a byproduct film overlying the thinned sacrificial layer; performing a second etching process on the byproduct film to remove a portion of the byproduct layer for exposing a portion of the thinned sacrificial layer, while another portion of the byproduct film disposed on sidewalls of the thinned sacrificial layer being remained; and performing a third etching process on the thinned sacrificial layer, to remove the portion of the thinned sacrificial layer exposed in the second etching process.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: October 30, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Chan-Lon Yang, Yeng-Peng Wang, Chiu-Hsien Yeh
  • Publication number: 20120244675
    Abstract: A method for forming a metal gate is provided. First, a dummy material is formed to completely cover a substrate. Second, a dopant is selectively implanted into the dummy material. Then, some of the dummy material is removed to expose part of the substrate and to form a dummy gate including a dopant region disposed between a first region and a second region. Later an interlayer dielectric layer is formed to surround the dummy gate. Next, a selective etching step is carried out to remove the first region to form a recess without substantially removing the dopant region. Afterwards, the recess is filled with a material set to form a metal gate.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 27, 2012
    Inventors: Chun-Yuan Wu, Chin-Cheng Chien, Chiu-Hsien Yeh, Yeng-Peng Wang
  • Publication number: 20120070995
    Abstract: A method for fabricating a metal gate transistor is disclosed. The method includes the steps of: providing a substrate having a first transistor region and a second transistor region; forming a first metal-oxide semiconductor (MOS) transistor on the first transistor region and a second MOS transistor on the second transistor region, in which the first MOS transistor includes a first dummy gate and the second MOS transistor comprises a second dummy gate; forming a patterned hard mask on the second MOS transistor, in which the hard mask includes at least one metal atom; and using the patterned hard mask to remove the first dummy gate of the first MOS transistor.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 22, 2012
    Inventors: Yeng-Peng Wang, Chun-Hsien Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chan-Lon Yang
  • Publication number: 20120003835
    Abstract: An exemplary method of etching sacrificial layer includes steps of: providing a substrate formed with a sacrificial layer and defined with a first region and a second region, the sacrificial layer disposed in both the first and second regions; forming a hard mask covering the first region while exposing the second region; performing a first etching process on the sacrificial layer to thin the sacrificial layer while forming a byproduct film overlying the thinned sacrificial layer; performing a second etching process on the byproduct film to remove a portion of the byproduct layer for exposing a portion of the thinned sacrificial layer, while another portion of the byproduct film disposed on sidewalls of the thinned sacrificial layer being remained; and performing a third etching process on the thinned sacrificial layer, to remove the portion of the thinned sacrificial layer exposed in the second etching process.
    Type: Application
    Filed: July 5, 2010
    Publication date: January 5, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chan-Lon YANG, Yeng-Peng Wang, Chiu-Hsien Yeh
  • Patent number: 7759252
    Abstract: The present invention is related to a method of two-step backside-etching. First, a substrate with a plurality of hard masks is provided. Next, the back and the edge of the substrate are backside-etched to remove parts of the hard masks on the back and the edge of the substrate. Then, the hard masks and the substrate are patterned in sequence to form a plurality of trenches in the substrate. Finally, before performing a wet bath step, the edge of the substrate is backside-etched to remove needle structures on the edge of the substrate.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: July 20, 2010
    Assignee: Promos Technologies Inc.
    Inventor: Yeng-Peng Wang
  • Publication number: 20080280450
    Abstract: The present invention is related to a method of two-step backside-etching. First, a substrate with a plurality of hard masks is provided. Next, the back and the edge of the substrate are backside-etched to remove parts of the hard masks on the back and the edge of the substrate. Then, the hard masks and the substrate are patterned in sequence to form a plurality of trenches in the substrate. Finally, before performing a wet bath step, the edge of the substrate is backside-etched to remove needle structures on the edge of the substrate.
    Type: Application
    Filed: July 10, 2007
    Publication date: November 13, 2008
    Inventor: Yeng-Peng Wang