Patents by Inventor Yeon Shick Yoo

Yeon Shick Yoo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837462
    Abstract: A solar spectral wavelength converting material with improved efficiency and a solar cell including the same. According to an embodiment, a solar spectral wavelength converting material includes an aluminum hydroxide precursor and an aromatic ring compound or a derivative including the same.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: December 5, 2023
    Assignee: HANWHA TOTAL PETROCHEMICAL CO., LTD.
    Inventors: Hyo Joo Shin, Young Rae Kim, Yeon Shick Yoo
  • Publication number: 20220186000
    Abstract: A method for preparing a rubber composition capable of improving the physical properties of a final product is disclosed. A rubber composition is prepared by dispersing polybutene in rubber in a solution phase (PIB extended rubber). The method comprises dispersing hydrophobic extender oil and polybutene in water to prepare an extender oil/polybutene emulsion; adding the extender emulsion to a latex-shaped rubber composition and uniformly dispersing the same in a solution to prepare a rubber/extension oil/polybutene composition; and solidifying, drying and molding the composition in a latex shape through salting-out and acid precipitation. When the rubber composition is applied to a tire tread composite material, the durability, grip property and low rotational resistance are improved, thereby attaining improved braking characteristic, low fuel consumption characteristic, and wear performance.
    Type: Application
    Filed: July 9, 2021
    Publication date: June 16, 2022
    Inventors: Jun Keol Choi, Do Hoon Lee, Sung Kyo Jung, Yeon Shick Yoo
  • Publication number: 20220102594
    Abstract: A solar spectral wavelength converting material with improved efficiency and a solar cell including the same. According to an embodiment, a solar spectral wavelength converting material includes an aluminum hydroxide precursor and an aromatic ring compound or a derivative including the same.
    Type: Application
    Filed: March 22, 2021
    Publication date: March 31, 2022
    Inventors: Hyo Joo SHIN, Young Rae KIM, Yeon Shick YOO
  • Publication number: 20180133694
    Abstract: The provided is a method for preparing a platinum-tin-metal-alumina catalyst by comprising: as an active ingredient, platinum which has a high activity in a direct dehydrogenation reaction of n-butane, tin which can increase the catalyst stability by preventing carbon deposition; additionally metal for reducing the level of catalyst inactivation over the reaction time; and an alumina carrier for supporting said components. Further, provided is a method for producing a high value product, C4 olefins from low cost n-butane by using the catalyst prepared by the method according to the present invention in a direct dehydrogenation reaction.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Gle PARK, Yeon Shick YOO, Jin Suk Lee, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Hyun SEO, Jong Kwon LEE
  • Patent number: 9522383
    Abstract: The present invention discloses a method of producing a magnesia-zirconia complex carrier for a catalyst for oxidative dehydrogenation of n-butane by sol-gel method; a method of producing a magnesium orthovanadate catalyst containing vanadium supported by said magnesia-zirconia complex carrier; and a method of producing n-butene and 1,3-butadiene using said catalyst.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 20, 2016
    Assignee: HANWHA TOTAL PETROCHEMICAL CO., LTD.
    Inventors: Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Chang, In Kyu Song, Jong Kwon Lee, Ho Won Lee
  • Patent number: 9403690
    Abstract: Provided is a preparation method for a mesoporous zeolite, particularly a method for preparing mesoporous zeolite through a simple process without using costly materials such as an organic amine template or a surfactant. The method includes 1) forming a synthetic zeolite gel by mixing a silica precursor, an aluminum precursor and water and aging the resulted mixture; 2) carrying out zeolite synthesis by subjecting the synthetic zeolite gel to a hydrothermal reaction; 3) cooling the synthesized zeolite from the above step 2), then adding a basic solution thereto and allowing them to react, thereby obtaining a mesoporous zeolite slurry; and 4) washing the mesoporous zeolite slurry with water, drying and firing it, thereby obtaining a mesoporous zeolite.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: August 2, 2016
    Assignees: HANWHA TOTAL PETROCHEMICAL CO., LTD., KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Jeong Rang Kim, Yeon Shick Yoo, Jin Suk Lee, Ho Sik Chang, Yun Jo Lee, Ki Won Jun, Jo Yong Park, Kyoung Su Ha
  • Publication number: 20150038758
    Abstract: The provided is a method for preparing a platinum-tin-metal-alumina catalyst by comprising: as an active ingredient, platinum which has a high activity in a direct dehydrogenation reaction of n-butane, tin which can increase the catalyst stability by preventing carbon deposition; additionally metal for reducing the level of catalyst inactivation over the reaction time; and an alumina carrier for supporting said components. Further, provided is a method for producing a high value product, C4 olefins from low cost n-butane by using the catalyst prepared by the method according to the present invention in a direct dehydrogenation reaction.
    Type: Application
    Filed: July 28, 2014
    Publication date: February 5, 2015
    Inventors: Gle PARK, Yeon Shick YOO, Jin Suk LEE, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Hyun SEO, Jong Kwon LEE
  • Publication number: 20150024929
    Abstract: The present invention discloses a method of producing a magnesia-zirconia complex carrier for a catalyst for oxidative dehydrogenation of n-butane by sol-gel method; a method of producing a magnesium orthovanadate catalyst containing vanadium supported by said magnesia-zirconia complex carrier; and a method of producing n-butene and 1,3-butadiene using said catalyst.
    Type: Application
    Filed: October 15, 2012
    Publication date: January 22, 2015
    Inventors: Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Chang
  • Patent number: 8927455
    Abstract: The present invention discloses a method of producing a magnesia-zirconia complex carrier for a catalyst for oxidative dehydrogenation of n-butane through a single-step precipitation process wherein the oxidative dehydrogenation of n-butane is to produce n-butene and 1,3-butadiene from n-butane; a method of producing a magnesium orthovanadate catalyst supported by thus prepared magnesia-zirconia complex carrier; and a method of producing n-butene and 1,3-butadiene using said catalyst.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: January 6, 2015
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Young Jin Cho, Yeon Shick Yoo, Jin Suk Lee, Ho Sik Chang, In Kyu Song, Ho Won Lee, Jong Kwon Lee
  • Publication number: 20140309470
    Abstract: The provided is a preparation method of a platinum/tin/alumina catalyst which comprises platinum as an active component having high activity to direct dehydrogenation of n-butane, tin capable of preventing platinum particles from being sintered and maintaining a size of the platinum particles to be small, thereby improving dispersibility and increasing an amount at an active site during the dehydrogenation and also capable of suppressing carbon deposition, thereby increasing stability of the catalyst, and as an support for supporting them, an alumina support which is known as being suitable for direct dehydrogenation of n-butane and is capable of maintaining high dispersibility of the platinum with high thermal and mechanical stability, and a method for producing high value-added C4 olefins through direct dehydrogenation of inexpensive n-butane by using the catalyst prepared by the preparation method.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 16, 2014
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Gle PARK, Yeon Shick YOO, Young Jin CHO, Jin Suk LEE, Ho Sik CHANG, Chang Hyun CHOI, In Kyu SONG, Jong Kwon LEE, Hyun SEO
  • Patent number: 8809226
    Abstract: A method of producing a carrier used for a catalyst for oxidative dehydrogenation of n-butane; a method of producing a magnesium orthovanadate catalyst supported by the carrier; and a method of producing n-butene and 1,3-butadiene using the catalyst are described.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 19, 2014
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: In Kyu Song, Ho Won Lee, Yeon Shick Yoo, Young Jin Cho, Jin Suk Lee, Ho Sik Jang
  • Publication number: 20140056805
    Abstract: The provided is a preparation method of a mesoporous zeolite, particularly a method for preparing mesoporous zeolite through a simple process without using costly materials such as an organic amine template or a surfactant.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicants: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY, SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Jeong Rang Kim, Yeon Shick Yoo, Jin Suk Lee, Ho Sik Chang, Yun Jo Lee, Ki Won Jun, Jo Yong Park, Kyoung Su Ha
  • Patent number: 8354482
    Abstract: The present invention provides a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included); a method for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst; and a reactor used for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst. Further, the present invention provides a method for producing the (meth)acrylic acid without any additional process of converting (meth)acrolein into (meth)acrylic acid.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 15, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Jin Cho
  • Publication number: 20120232320
    Abstract: A method of producing a carrier used for a catalyst for oxidative dehydrogenation of n-butane; a method of producing a magnesium orthovanadate catalyst supported by the carrier; and a method of producing n-butene and 1,3-butadiene using the catalyst are described.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: SAMSUNG TOTAL PETROCHEMICALS CO., LTD.
    Inventors: Ho Won SONG, Ho Won LEE, Yeon Shick YOO, Young Jin CHO, Jin Suk LEE, Ho Sik JANG
  • Patent number: 8247344
    Abstract: The present invention provides a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included); a method for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst; and a reactor used for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst. Further, the present invention provides a method for producing the (meth)acrylic acid without any additional process of converting (meth)acrolein into (meth)acrylic acid.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 21, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Jin Cho
  • Publication number: 20110245535
    Abstract: The present invention provides a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included); a method for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst; and a reactor used for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst. Further, the present invention provides a method for producing the (meth)acrylic acid without any additional process of converting (meth)acrolein into (meth)acrylic acid.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 6, 2011
    Inventors: Hyun-Jong SHIN, Byung-Yul Choi, Yeon-Shick Yoo, Young-Jin Cho
  • Publication number: 20110243806
    Abstract: The present invention provides a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included); a method for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst; and a reactor used for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst. Further, the present invention provides a method for producing the (meth)acrylic acid without any additional process of converting (meth)acrolein into (meth)acrylic acid.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 6, 2011
    Inventors: Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Jin Cho
  • Patent number: 7943710
    Abstract: The present invention provides a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included); a method for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst; and a reactor used for producing (meth)acrylic acid from at least one reactant selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, in which a Mo—Bi—Nb based composite metal oxide (with the proviso that Te is not included) is used as a catalyst.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 17, 2011
    Assignee: LG Chem., Ltd
    Inventors: Hyun-Jong Shin, Byung-Yul Choi, Yeon-Shick Yoo, Young-Jin Cho
  • Patent number: 7772442
    Abstract: Disclosed is a shell-and-tube reactor that may be used for fixed-bed catalytic partial oxidation, the reactor being characterized by including at least one reaction zone of a first-step reaction zone for mainly producing unsaturated aldehydes and a second-step reaction zone for mainly producing unsaturated acids, wherein at least one reaction zone of the above reaction zones comprises two or more catalytic layers; each of the catalytic layers is packed with a formed product of catalyst that is different in pore density and/or pore size in a catalytically active component; and the pore density and/or pore size is controlled in such a manner that specific surface area of the catalytically active component increases from the inlet of the reactor to the outlet of the reactor. A method for producing unsaturated aldehydes and/or unsaturated fatty acids from olefins using the same reactor is also disclosed.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 10, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Yeon Shick Yoo, Hyun Jong Shin, Byung Yul Choi, Young Hyun Choi, Young Jin Cho, Duk Ki Kim, Joo Yeon Park, Kwang Ho Park
  • Patent number: 7638458
    Abstract: Disclosed are a Mo—Bi—Nb—Te based composite metal oxide; and a process for producing (meth)acrylic acid from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, wherein the Mo—Bi—Nb—Te based composite metal oxide is used as a catalyst. Also, disclosed is a process for producing (meth)acrylic acid comprising a first step of producing (meth)acrolein as a main product from at least one reaction material selected from the group consisting of propylene, propane, isobutylene, t-butyl alcohol and methyl-t-butyl ether, and a second step of producing (meth)acrylic acid from the (meth)acrolein, wherein yield of (meth)acrylic acid in the product of the first step is 20 mole % or higher.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: December 29, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Jong Shin, Byung Yul Choi, Yeon Shick Yoo, Young Hyun Choe, Young Jin Cho, Duk Ki Kim, Kwang Ho Park, Joo Yeon Park