Patents by Inventor Yeon Soo JUNG

Yeon Soo JUNG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200343163
    Abstract: In accordance with the present description, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Applicant: Amkor Technology Singapore Holding Pte. Ltd
    Inventors: Dong Joo PARK, Jin Seong KIM, Ki Wook LEE, Dae Byoung KANG, Ho CHOI, Kwang Ho KIM, Jae Dong KIM, Yeon Soo JUNG, Sung Hwan CHO
  • Patent number: 10811341
    Abstract: In accordance with the present description, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: October 20, 2020
    Assignee: Amkor Technology Singapore Holding Pte Ltd.
    Inventors: Dong Joo Park, Jin Seong Kim, Ki Wook Lee, Dae Byoung Kang, Ho Choi, Kwang Ho Kim, Jae Dong Kim, Yeon Soo Jung, Sung Hwan Cho
  • Publication number: 20200172400
    Abstract: The present invention provides a process for preparing a carbon nanotube sheet, which comprises forming carbon nanotubes; aggregating the carbon nanotubes to form a yarn; treating the yarn with a solvent to enhance the aggregation force; winding the solvent-treated yarn to prepare a sheet preform having a structure in which one yarn is continuously wound; and cutting and/or pressing the sheet preform to prepare a carbon nanotube sheet that comprises an arrangement structure in which one or a plurality of yarns are uniaxially aligned, and a carbon nanotube sheet prepared thereby.
    Type: Application
    Filed: October 29, 2019
    Publication date: June 4, 2020
    Inventors: Se Hoon Gihm, Keun Soo Jeong, Yeon Su Jung
  • Patent number: 10662554
    Abstract: The present invention relates to a method for preparing spandex having improved unwinding properties and enhanced adhesive properties with a hot melt adhesive and, more specifically, to a method for preparing spandex by means of adding a polystyrene polymer to a polyurethane-urea solution which is a spinning solution. Therefore, when spandex is unwound, irregular ballooning, tension spikes and the like can be effectively improved and other physical properties are unaffected. And the adhesive properties with a hot melt adhesive are enhanced.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: May 26, 2020
    Assignee: HYOSUNG TNC CORPORATION
    Inventors: Hyun Gee Jung, Joo Hyun Cho, Yeon Soo Kang
  • Publication number: 20200109492
    Abstract: The present invention provides a process for preparing a yarn, which comprises introducing a raw material that comprises a carbon source and a catalyst into a reaction chamber having a heating means, converting the carbon source into a plurality of carbon nanotubes in a heating part of the reaction chamber with thermal energy supplied by the heating means, and growing the plurality of carbon nanotubes in the vertical direction to form a yarn by the interactions among the carbon nanotubes.
    Type: Application
    Filed: September 17, 2019
    Publication date: April 9, 2020
    Inventors: Se Hoon Gihm, Keun Soo Jeong, Yeon Su Jung
  • Patent number: 10611858
    Abstract: According to the present invention, there is provided a method for preparing low molecular weight amorphous polypropylene. In contrast to the prior art in which amorphous polypropylene is prepared by injecting an internal donor and an external donor upon preparing a primary catalyst, the present invention enables easier preparation of low molecular weight amorphous polypropylene and a copolymer thereof by simply mixing a primary catalyst with an alkylaluminum-based co-catalyst without injecting an internal donor, upon preparing a primary catalyst, and an external donor, upon polymerization. According to the present invention, the primary catalyst has superior reactivity with hydrogen, as chain transfer agent, allowing for preparation of low molecular weight amorphous polypropylene even under low hydrogen pressures and low-pressure driving conditions.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 7, 2020
    Inventors: Yeon Jae Jung, Jung Hwa Baek, Hyun Soo Ha, Gil Soon Kang, Young Tae Jeong
  • Publication number: 20200075181
    Abstract: A zirconium alloy is manufactured through melting; solution heat treatment at 1,000 to 1,050° C. (?) for 30 to 40 min and ?-quenching using water; preheating at 630 to 650° C. for 20 to 30 min and hot rolling at a reduction ratio of 60 to 65%; primary intermediate vacuum annealing at 570 to 590° C. for 3 to 4 hr and primarily cold-rolled at a reduction ratio of 30 to 40%; secondary intermediate vacuum annealing at 560 to 580° C. for 2 to 3 hr and secondarily cold-rolled at a reduction ratio of 50 to 60%; tertiary intermediate vacuum annealing at 560 to 580° C. for 2 to 3 hr and tertiarily cold-rolled at a reduction ratio of 30 to 40%; and final vacuum annealing at 460 to 590° C. for 7 to 9 hr.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 5, 2020
    Applicant: KEPCO NUCLEAR FUEL CO., LTD.
    Inventors: Min Young CHOI, Yong Kyoon MOK, Yoon Ho KIM, Yeon Soo NA, Chung Yong LEE, Hun JANG, Tae Sik JUNG, Dae Gyun GO, Sung Yong LEE, Seung Jae LEE, Jae Ik KIM
  • Publication number: 20190367415
    Abstract: Provided is a silicon-carbide-sintered body in which plural crystal grains including silicon carbide are densely formed so as to be adjacent to each other. Sc and Y elements are present in a rich phase at a triple point at which interfaces of the crystal grains forming the sintered body meet each other without solid-solution of the elements in the crystal grains. Accordingly, sintering is feasible at a temperature of 1950° C. or lower, and an EB layer including a rare-earth-Si oxide containing the Sc and Y elements is formed on a surface thereof without an EB coating process, and is also formed up to the inner region of a silicon carbide base, resulting in strong three-dimensional bonding, so that the possibility of peeling of the EB layer is reduced and a new EB layer is formed even when peeling occurs, increasing the resistance to corrosion of the silicon carbide material.
    Type: Application
    Filed: February 26, 2019
    Publication date: December 5, 2019
    Applicant: KEPCO NUCLEAR FUEL CO., LTD.
    Inventors: Kwang-young Lim, Seung-jae Lee, Yeon-soo Na, Tae Sik Jung
  • Publication number: 20190260077
    Abstract: Provided is a hybrid solid electrolyte comprising: a hybrid film including (i) 60 to 100 parts by weight of an ion conductive ceramic and (ii) 1 to 40 parts by weight of a polymer; and a liquid electrolyte including (i) an ion compound selected from the group consisting of lithium ions and sodium ions and (ii) a solvent, wherein the hybrid film is impregnated with the liquid electrolyte.
    Type: Application
    Filed: March 20, 2019
    Publication date: August 22, 2019
    Inventors: Jae-Kwang KIM, Ji-Won SON, Seoung Soo LEE, Yeon-Gil JUNG, Jing LEE
  • Publication number: 20180308788
    Abstract: In accordance with the present description, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body.
    Type: Application
    Filed: July 2, 2018
    Publication date: October 25, 2018
    Applicant: AMKOR TECHNOLOGY, INC.
    Inventors: Dong Joo PARK, Jin Seong KIM, Ki Wook LEE, Dae Byoung KANG, Ho CHOI, Kwang Ho KIM, Jae Dong KIM, Yeon Soo JUNG, Sung Hwan CHO
  • Publication number: 20170117214
    Abstract: In accordance with the present invention, there is provided multiple embodiments of a semiconductor device. In each embodiment, the semiconductor device comprises a substrate having a conductive pattern formed thereon. In addition to the substrate, each embodiment of the semiconductor device includes at least one semiconductor die which is electrically connected to the substrate, both the semiconductor die and the substrate being at least partially covered by a package body of the semiconductor device. In certain embodiments of the semiconductor device, through-mold vias are formed in the package body to provide electrical signal paths from an exterior surface thereof to the conductive pattern of the substrate. In other embodiments, through mold vias are also included in the package body to provide electrical signal paths between the semiconductor die and an exterior surface of the package body.
    Type: Application
    Filed: December 26, 2016
    Publication date: April 27, 2017
    Applicant: AMKOR TECHNOLOGY, INC.
    Inventors: Dong Joo PARK, Jin Seong KIM, Ki Wook LEE, Dae Byoung KANG, Ho CHOI, Kwang Ho KIM, Jae Dong KIM, Yeon Soo JUNG, Sung Hwan CHO