Patents by Inventor Yeow Kheng Lim

Yeow Kheng Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070001303
    Abstract: An integrated circuit system includes providing a semiconductor substrate having a semiconductor device provided thereon. A first dielectric layer is formed over the semiconductor substrate, and a first conductor core is formed in the first dielectric layer. A stop layer is formed over the first conductor core. A second dielectric layer is formed over the stop layer. A channel and a via are formed in the second dielectric layer. The channel and the via in the second dielectric layer are wet cleaned. A barrier metal layer is deposited to line the channel and the via in the second dielectric layer. The barrier metal layer is selectively etched from the bottom of the via in the dielectric layer, and a second conductor core is formed over the barrier metal layer to fill the second channel and the via to connect the second conductor core to the first conductor core.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING, LTD.
    Inventors: Yeow Kheng Lim, Chim Seng Seet, Tae Jong Lee, Liang-Choo Hsia, Kin Leong Pey
  • Patent number: 7119010
    Abstract: An integrated circuit and manufacturing method therefor is provided having a base with a first dielectric layer formed thereon. A second dielectric layer is formed over the first dielectric layer. A third dielectric layer is formed in spaced-apart strips over the second dielectric layer. A first trench opening is formed through the first and second dielectric layers between the spaced-apart strips of the third dielectric layer. A second trench opening is formed contiguously with the first trench opening through the first dielectric layer between the spaced-apart strips of the third dielectric layer. Conductor metals in the trench openings form self-aligned trench interconnects.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: October 10, 2006
    Assignee: Chartered Semiconductor Manfacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh
  • Patent number: 6967156
    Abstract: A method of forming an aligned dual damascene opening, comprising including the following sequential steps. A layer stack is formed over the metal structure. The layer stack comprises, in ascending order: a bottom etch stop layer; a lower dielectric material layer; a middle etch stop layer; a middle dielectric material layer; and an upper dielectric layer. A patterned mask layer is formed over the patterned upper dielectric layer leaving exposed opposing portions of the patterned upper dielectric layer. The middle dielectric material layer is patterned to form an opening therein using the patterned mask layer and the exposed portions of the upper dielectric layer as masks.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: November 22, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Wuping Liu, Tae Jong Lee, Bei Chao Zhang, Juan Boon Tan, Alan Cuthbertson, Chin Chuan Neo
  • Patent number: 6849928
    Abstract: A silicon-on-insulator semiconductor device is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 1, 2005
    Assignee: Chartered Semiconductor Manufacturing, LTD
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex See, Tae Jong Lee, Wang Ling Goh
  • Patent number: 6780691
    Abstract: A method for forming a transistor having an elevated source/drain structure is described. A gate electrode is formed overlying a substrate and isolated from the substrate by a gate dielectric layer. Isolation regions are formed in and on the substrate wherein the isolation regions have a stepped profile wherein an upper portion of the isolation regions partly overlaps and is offset from a lower portion of the isolation regions in the direction away from the gate electrode. Ions are implanted into the substrate between the gate electrode and the isolation regions to form source/drain extensions. Dielectric spacers are formed on sidewalls of the gate electrode and the isolation regions.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: August 24, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex Kai Hung See, Jia Zhen Zheng
  • Publication number: 20040033668
    Abstract: A method for forming a transistor having an elevated source/drain structure is described. A gate electrode is formed overlying a substrate and isolated from the substrate by a gate dielectric layer. Isolation regions are formed in and on the substrate wherein the isolation regions have a stepped profile wherein an upper portion of the isolation regions partly overlaps and is offset from a lower portion of the isolation regions in the direction away from the gate electrode. Ions are implanted into the substrate between the gate electrode and the isolation regions to form source/drain extensions. Dielectric spacers are formed on sidewalls of the gate electrode and the isolation regions.
    Type: Application
    Filed: August 16, 2002
    Publication date: February 19, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex Kai Hung See, Jia Zhen Zheng
  • Publication number: 20030197279
    Abstract: An integrated circuit and manufacturing method therefor is provided having a base with a first dielectric layer formed thereon. A second dielectric layer is formed over the first dielectric layer. A third dielectric layer is formed in spaced-apart strips over the second dielectric layer. A first trench opening is formed through the first and second dielectric layers between the spaced-apart strips of the third dielectric layer. A second trench opening is formed contiguously with the first trench opening through the first dielectric layer between the spaced-apart strips of the third dielectric layer. Conductor metals in the trench openings form self-aligned trench interconnects.
    Type: Application
    Filed: April 23, 2002
    Publication date: October 23, 2003
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh
  • Patent number: 6613652
    Abstract: A method to form SOI devices using wafer bonding. A first substrate is provided having trenches in a first side. A first insulating layer is formed over the first side of the first substrate and filling the trenches. We planarize the first insulating layer to form isolation regions (e.g., STI). The three embodiments of the invention planarize the first insulating layer to different levels. In the second embodiment, the first insulating layer is etched back to form a recess. This recess later forms an air gap. We provide a second substrate having a second insulating layer over a first side of the second substrate. We bond the second insulating layer to the first insulating layer. Next, we thin the first substrate from the second side to expose the first insulating layer to form active areas between the isolation regions. Lastly, devices are formed in and on the active areas.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: September 2, 2003
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Tae Jong Lee, Wang Ling Goh
  • Publication number: 20030107083
    Abstract: A silicon-on-insulator semiconductor device is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 12, 2003
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex See, Tae Jong Lee, Wang Ling Goh
  • Patent number: 6558994
    Abstract: A silicon-on-insulator semiconductor device and manufacturing method therefor is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: May 6, 2003
    Assignee: Chartered Semiconductors Maufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex See, Tae Jong Lee, Wang Ling Goh
  • Patent number: 6518133
    Abstract: A method of manufacturing a transistor with a small self aligned gate and self aligned elevated source/drain regions. A first insulating layer is formed over a substrate. A first opening is formed in the first insulating layer to expose the substrate. We form a gate dielectric layer over the substrate in the first opening. Next, first spacers are formed on the sidewalls of the first insulating layer. A gate layer is formed over the first insulating layer, the first spacers, and the gate dielectric layer. We planarize the gate layer to form a gate electrode. The first spacers are removed to form LDD openings. Next, we form lightly doped source/drain regions in the substrate in the LDD openings. Subsequently, second spacers are formed on the sidewalls of the first insulating layer and on the sidewalls of the gate electrode to form S/D openings. Source/drain regions are formed in the substrate in the S/D openings. Next, we form a conductive layer over the substrate at least partially filling the S/D openings.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: February 11, 2003
    Assignee: Chartered Semiconductor Manufacturing LTD
    Inventors: Alex See, Yeow Kheng Lim, Cher Liang Randall Cha
  • Patent number: 6472697
    Abstract: A method of manufacturing conductive lines that are thicker (not wider) in the critical paths areas. We form a plurality of first level conductive lines over a first dielectric layer. The first conductive lines run in a first direction. The first level conductive lines are comprised of a first level first conductive line and a second first level conductive line. We form a second dielectric layer over the first level conductive lines and the first dielectric layer. Next, we form a via opening in the second dielectric layer over a portion of the first level first conductive line. A plug is formed filling the via opening. We form a trench pattern in the second dielectric layer. The trench pattern is comprised of trenches that are approximately orthogonal to the first level conductive lines. We fill the trenches with a conductive material to form supplemental second lines. We form second level conductive lines over the supplemental second lines and the plug.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: October 29, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh, Victor Seng Keong Lim
  • Patent number: 6468880
    Abstract: A method to form a silicon on insulator (SOI) device using wafer bonding. A first substrate is provided having an insulating layer over a first side. A second substrate is provided having first isolation regions (e.g., STI) that fill first trenches in the second substrate. Next, we bond the first and second substrate together by bonding the insulating layer to the first isolation regions and the second substrate. Then, a stop layer is formed over the second side of the second substrate. The stop layer and the second side of the second substrate are patterned to form second trenches in the second substrate. The second trenches have sidewalls at least partially defined by the isolation regions and the second trenches expose the second insulating layer. The second trenches define first active regions over the first isolation regions (STI) and define second active regions over the insulating layer. Next, the second trenches are filled with an insulator material to from second isolation regions.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: October 22, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Tae Jong Lee, Wang Ling Goh
  • Publication number: 20020132448
    Abstract: A method to form SOI devices using wafer bonding. A first substrate is provided having trenches in a first side. A first insulating layer is formed over the first side of the first substrate and filling the trenches. We planarize the first insulating layer to form isolation regions (e.g., STI). The three embodiments of the invention planarize the first insulating layer to different levels. In the second embodiment, the first insulating layer is etched back to form a recess. This recess later forms an air gap. We provide a second substrate having a second insulating layer over a first side of the second substrate. We bond the second insulating layer to the first insulating layer. Next, we thin the first substrate from the second side to expose the first insulating layer to form active areas between the isolation regions. Lastly, devices are formed in and on the active areas.
    Type: Application
    Filed: March 14, 2001
    Publication date: September 19, 2002
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Laing Cha, Alex See, Tae Jong Lee, Wang Ling Goh
  • Publication number: 20020127834
    Abstract: A method of manufacturing conductive lines that are thicker (not wider) in the critical paths areas. We form a plurality of first level conductive lines over a first dielectric layer. The first conductive lines run in a first direction. The first level conductive lines are comprised of a first level first conductive line and a second first level conductive line. We form a second dielectric layer over the first level conductive lines and the first dielectric layer. Next, we form a via opening in the second dielectric layer over a portion of the first level first conductive line. A plug is formed filling the via opening. We form a trench pattern in the second dielectric layer. The trench pattern is comprised of trenches that are approximately orthogonal to the first level conductive lines. We fill the trenches with a conductive material to form supplemental second lines. We form second level conductive lines over the supplemental second lines and the plug.
    Type: Application
    Filed: May 8, 2002
    Publication date: September 12, 2002
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh, Victor Seng Keong Lim
  • Publication number: 20020127816
    Abstract: A silicon-on-insulator semiconductor device and manufacturing method therefor is provided in which a single wafer die contains a transistor over an insulator layer to form a fully depleted silicon-on-insulator device and a transistor formed in a semiconductor island over an insulator structure on the semiconductor wafer forms a partially depleted silicon-on-insulator device.
    Type: Application
    Filed: March 1, 2001
    Publication date: September 12, 2002
    Inventors: Randall Cher Liang Cha, Yeow Kheng Lim, Alex See, Tae Jong Lee, Wang Ling Goh
  • Patent number: 6432797
    Abstract: A method for forming shallow trench isolation wherein oxide divots at the edge of the isolation and active regions are reduced or eliminated is described. A trench is etched into a semiconductor substrate. An oxide layer is deposited overlying the semiconductor substrate and filling the trench. Nitrogen atoms are implanted into the oxide layer overlying the trench. The substrate is annealed whereby a layer of nitrogen-rich oxide is formed at the surface of the oxide layer overlying the trench.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: August 13, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Randall Cher Liang Cha, Tae Jong Lee, Alex See, Lap Chan, Yeow Kheng Lim
  • Publication number: 20020098661
    Abstract: A method for forming shallow trench isolation wherein oxide divots at the edge of the isolation and active regions are reduced or eliminated is described. A trench is etched into a semiconductor substrate. An oxide layer is deposited overlying the semiconductor substrate and filling the trench. Nitrogen atoms are implanted into the oxide layer overlying the trench. The substrate is annealed whereby a layer of nitrogen-rich oxide is formed at the surface of the oxide layer overlying the trench.
    Type: Application
    Filed: January 25, 2001
    Publication date: July 25, 2002
    Inventors: Randall Cher Liang Cha, Tae Jong Lee, Alex See, Lap Chan, Yeow Kheng Lim
  • Patent number: 6399471
    Abstract: A method of manufacturing conductive lines that are thicker (not wider) in the critical paths areas. We form a plurality of first level conductive lines over a first dielectric layer. The first conductive lines run in a first direction. The first level conductive lines are comprised of a first level first conductive line and a second first level conductive line. We form a second dielectric layer over the first level conductive lines and the first dielectric layer. Next, we form a via opening in the second dielectric layer over a portion of the first level first conductive line. A plug is formed filling the via opening. We form a trench pattern in the second dielectric layer. The trench pattern is comprised of trenches that are approximately orthogonal to the first level conductive lines. We fill the trenches with a conductive material to form supplemental second lines. We form second level conductive lines over the supplemental second lines and the plug.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: June 4, 2002
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Yeow Kheng Lim, Randall Cher Liang Cha, Alex See, Wang Ling Goh, Victor Seng Keong Lim
  • Patent number: 6380084
    Abstract: A method to form robust dual damascene interconnects by decoupling via and connective line trench filling has been achieved. A first dielectric layer is deposited overlying a silicon nitride layer. A shielding layer is deposited. The shielding layer, the first dielectric layer, and the silicon nitride layer are patterned to form via trenches. A first barrier layer is deposited to line the trenches. The via trenches are filled with a first copper layer by a single deposition or by depositing a seed layer and then electroless or electrochemical plating. The first copper layer is polished down to complete the vias. A second barrier layer is deposited. The second barrier layer is patterned to form via caps. A second dielectric layer is deposited. A capping layer is deposited. The capping layer and the second dielectric layer are patterned to form connective line trenches that expose a part of the via caps. A third barrier layer is deposited to line the connective line trenches.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: April 30, 2002
    Assignee: Chartered Semiconductor Manufacturing Inc.
    Inventors: Yeow Kheng Lim, Alex See, Cher Liang Cha, Subhash Gupta, Wang Ling Goh, Man Siu Tse