Patents by Inventor Yeping Cai

Yeping Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230398520
    Abstract: The present disclosure relates generally to a methanol reforming catalyst composition comprising a ZnO phase, present in the composition in an amount of 20-75 wt. %; a zinc-aluminum spinel phase, present in the composition in an amount of 20-60 wt. %; and a Cu dopant phase, present in the composition in an amount of 0.1-20 wt. %. In various embodiments, the methanol reforming catalyst can achieve stable high methanol conversion rates and high hydrogen production rates at high temperatures (>300° C.).
    Type: Application
    Filed: May 22, 2023
    Publication date: December 14, 2023
    Inventors: Yunyun Zhou, Jason Spencer, Brooke Ames, Yeping Cai
  • Patent number: 10532343
    Abstract: The present disclosure relates to nickel/aluminum-containing catalyst materials useful, for example, as reforming catalysts, processes for making them, and processes for using them in molten carbonate fuel cells. In one aspect, the disclosure provides a catalyst material including an alumina carrier in an amount in the range of about 5 wt % to about 75 wt %; and a mixed metal oxide in an amount in the range of about 25 wt % to about 95 wt %, the mixed metal oxide including at least about 90 wt % of oxides of nickel and aluminum, the mixed metal oxide having an atomic ratio of nickel to aluminum in the range of about 60:40 to about 90:10, the mixed metal oxide being substantially free of zirconium, in the form of a composite of the alumina carrier and the mixed metal oxide.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: January 14, 2020
    Assignee: CLARIANT CORPORATION
    Inventors: Chandra Ratnasamy, Jon P. Wagner, Yeping Cai, David B. Rogers, Jason E. Spencer, Jeffery L. Braden
  • Patent number: 10112830
    Abstract: The disclosure provides catalyst materials in the form of annular solids with high mechanical integrity useful for water gas shift reactions and methods for using such catalyst materials, for example, for converting carbon monoxide and steam to carbon dioxide and hydrogen.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 30, 2018
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, William M. Faris, David Tolle, Marc K. Born, Yeping Cai
  • Publication number: 20170333875
    Abstract: The present disclosure relates to nickel/aluminum-containing catalyst materials useful, for example, as reforming catalysts, processes for making them, and processes for using them in molten carbonate fuel cells. In one aspect, the disclosure provides a catalyst material including an alumina carrier in an amount in the range of about 5 wt % to about 75 wt %; and a mixed metal oxide in an amount in the range of about 25 wt % to about 95 wt %, the mixed metal oxide including at least about 90 wt % of oxides of nickel and aluminum, the mixed metal oxide having an atomic ratio of nickel to aluminum in the range of about 60:40 to about 90:10, the mixed metal oxide being substantially free of zirconium, in the form of a composite of the alumina carrier and the mixed metal oxide.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 23, 2017
    Inventors: Chandra RATNASAMY, Jon P. WAGNER, Yeping CAI, David B. ROGERS, Jason E. SPENCER, Jeffery L. BRADEN
  • Patent number: 9545619
    Abstract: The disclosure provides catalyst materials useful for hydrogenating olefins and shifting carbon monoxide and methods for using such catalyst materials. In one aspect, the disclosure provides catalyst materials including (a) copper, present in the range of about 20 weight % to about 80 weight %; (b) one or more stabilizer oxides stable under reducing conditions, each stabilizer oxide being a transition metal oxide or a metalloid oxide, the one or more stabilizer oxides being present in a total amount in the range of about 20 weight % to about 70 weight %; and (c) one or more multiple-valence metals, each multiple-valence metal being present in a positive oxidation state, the one or more multiple-valence metals are present in the range of about 0.1 weight % to about 40 weight %, all on an oxide basis.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: January 17, 2017
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Jason E. Spencer, Jennifer G. Renn, Yeping Cai
  • Patent number: 9440218
    Abstract: The present disclosure relates generally to methods and active materials for purifying gas streams containing halide as a contaminant, for example, in amounts as low as parts-per-million (ppm) or even parts-per-billion (ppb). In one aspect of the invention, an active material includes (a) one or more first metals each present as a metal oxide or metal hydroxide, the first metals being selected from the group consisting of iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold; and (b) one or more second metals each present as a metal oxide or metal hydroxide, the one or more second metals being selected from the group consisting of alkali metals, alkaline earth metals, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, and rhenium.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: September 13, 2016
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Simran K. Sokhey, Jason E. Spencer, Yeping Cai
  • Patent number: 9403152
    Abstract: The disclosure provides molybdenum and/or tungsten containing catalyst materials useful for the sour gas shift reactions and methods for using such catalyst materials, for example, for converting carbon monoxide and steam to carbon dioxide and hydrogen.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: August 2, 2016
    Assignee: CLARIANT CORPORATION
    Inventors: Justin X. Wang, William M. Faris, Yeping Cai
  • Publication number: 20160158735
    Abstract: The disclosure provides catalyst materials in the form of annular solids with high mechanical integrity useful for water gas shift reactions and methods for using such catalyst materials, for example, for converting carbon monoxide and steam to carbon dioxide and hydrogen.
    Type: Application
    Filed: December 8, 2014
    Publication date: June 9, 2016
    Inventors: Justin X. WANG, William M. FARIS, David TOLLE, Marc K. BORN, Yeping CAI
  • Publication number: 20160158732
    Abstract: The disclosure provides catalyst materials useful for hydrogenating olefins and shifting carbon monoxide and methods for using such catalyst materials.
    Type: Application
    Filed: December 4, 2014
    Publication date: June 9, 2016
    Inventors: Justin X. WANG, Jason E. SPENCER, Jennifer G. RENN, Yeping CAI
  • Patent number: 9254469
    Abstract: A technology for producing synthesis gas from crude gas from various gasification processes for solid or liquid fuels. To limit the temperatures in a subsequent strongly exothermic CO shift reaction to adjust the H2/CO ratio, the crude gas which has been freed of dust flows through two shift reactors arranged in series. The first reactor has a specific reaction-kinetically limited catalyst and the second reactor has a conventional sour gas catalyst. The specific catalyst used in the first reactor limits the exothermic shift reaction to such an extent that the reaction temperatures in the first and second reactors remain so low to avoid thermal damage to the catalysts even without introduction of external steam, and the desired gas composition is achieved.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: February 9, 2016
    Assignees: SIEMENS AKTIENGESELLSCHAFT, CLARIANT INTERNATIONAL LTD.
    Inventors: Yeping Cai, William M. Faris, Christian Görsch, Frank Hannemann, Doris Klostermann, Robert Marx, Manfred Schingnitz, Justin Wang, Ling Xu
  • Publication number: 20150148221
    Abstract: The disclosure provides molybdenum and/or tungsten containing catalyst materials useful for the sour gas shift reactions and methods for using such catalyst materials, for example, for converting carbon monoxide and steam to carbon dioxide and hydrogen.
    Type: Application
    Filed: November 25, 2013
    Publication date: May 28, 2015
    Applicant: Clariant Corporation
    Inventors: Justin X. Wang, William M. Faris, Yeping Cai
  • Publication number: 20150144842
    Abstract: A technology for producing synthesis gas from crude gas from various gasification processes for solid or liquid fuels. To limit the temperatures in a subsequent strongly exothermic CO shift reaction to adjust the H2/CO ratio, the crude gas which has been freed of dust flows through two shift reactors arranged in series. The first reactor has a specific reaction-kinetically limited catalyst and the second reactor has a conventional sour gas catalyst. The specific catalyst used in the first reactor limits the exothermic shift reaction to such an extent that the reaction temperatures in the first and second reactors remain so low to avoid thermal damage to the catalysts even without introduction of external steam, and the desired gas composition is achieved.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Yeping CAI, William M. Faris, Christian GÖRSCH, Frank HANNEMANN, Doris KLOSTERMANN, Robert MARX, Manfred SCHINGNITZ, Justin WANG, Ling XU
  • Publication number: 20140370289
    Abstract: The present disclosure relates generally to methods and active materials for purifying gas streams containing halide as a contaminant, for example, in amounts as low as parts-per-million (ppm) or even parts-per-billion (ppb). In one aspect of the invention, an active material includes (a) one or more first metals each present as a metal oxide or metal hydroxide, the first metals being selected from the group consisting of iron, cobalt, nickel, copper, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold; and (b) one or more second metals each present as a metal oxide or metal hydroxide, the one or more second metals being selected from the group consisting of alkali metals, alkaline earth metals, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, technetium, and rhenium.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Justin X. Wang, Simran K. Sokhey, Jason E. Spencer, Yeping Cai
  • Patent number: 8846564
    Abstract: A process for the sulfidation of a sour gas shift catalyst, wherein the temperature of the sulfidation feed stream is coordinated with the sulfur/hydrogen molar ratio in that feed stream to obtain enhanced performance of the sour gas shift catalyst. In the sulfidation process to produce a sour gas shift catalyst, the lower the sulfur to hydrogen molar ratio of the sulfidation feed stream, the lower the required temperature of the sulfidation feed stream. The sulfidation reaction can be further enhanced by increasing the pressure on the sulfidation feed stream.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 30, 2014
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Yeping Cai
  • Patent number: 8734740
    Abstract: A process for removing one or more of arsenic and other contaminants from a synthetic gas feedstock comprising a sulfur compound. The synthetic gas feedstock is contacted with a composition having an active material. The active material includes one or more elements having an electronegativity from 1.6 to 2.0 on the Pauling scale. At least a portion of the active material is a sulfide phase.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Clariant Corporation
    Inventors: Justin X. Wang, Yeping Cai, William M. Faris
  • Patent number: 8399718
    Abstract: A catalyst for hydrogenating aldehydes to alcohols includes a combination of copper oxide and zinc oxide and promoters including one or more alkaline earth metal promoters and/or one or more transition metal promoters. The promoters may be combined with copper oxide and zinc oxide after formation of a copper/zinc precursor material.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 19, 2013
    Assignee: Sud-Chemie Inc.
    Inventors: Justin X. Wang, Jason E. Spencer, Yeping Cai
  • Publication number: 20120142978
    Abstract: A catalyst for hydrogenating aldehydes to alcohols includes a combination of copper oxide and zinc oxide and promoters including one or more alkaline earth metal promoters and/or one or more transition metal promoters. The promoters may be combined with copper oxide and zinc oxide after formation of a copper/zinc precursor material.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 7, 2012
    Applicant: SUD-CHEMIE INC
    Inventors: Justin X. Wang, Jason E. Spencer, Yeping Cai
  • Patent number: 7964114
    Abstract: The present development is a catalyst for use in water gas shift processes, a method for making the catalyst and a method of using the catalyst. The catalyst is composed of iron oxide, copper oxide, zinc oxide, alumina, and optionally, potassium oxide, and is produced using a hydrothermal synthesis process. The catalyst demonstrates surprising activity for conversion of carbon monoxide under high to moderate temperature shift reaction conditions.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 21, 2011
    Assignee: Sud-Chemie Inc.
    Inventors: Chao Chen, Eshan Li, Yanxia Wang, Yeping Cai, Chandra Ratnasamy, Jeffery E. Riley, Xueqin J. Wang, Shizhong Zhao, Jürgen R. Ladebeck
  • Patent number: 7771586
    Abstract: A strontium-doped, calcium-alumina nickel supported reforming catalyst is useful for reforming reactions when it is desired to generate a low H2/CO ratio synthesis gas and to reduce coking. The catalyst can generate a synthesis gas having a H2/CO ratio of less than about 2.3. The catalyst includes alumina, from about 0.3 wt. % to about 35 wt. % of calcium oxide, from about 0.1 wl % to about 35 wt. % of a strontium promoter, and about 0.5 wt. % to about 30 wt. % nickel. The support is prepared by a method wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 10, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Chandra Ratnasamy, Yeping Cai, William M. Faris, Jürgen R. Ladebeck
  • Patent number: 7767619
    Abstract: A promoted calcium-alumina supported reforming catalyst that is particularly useful for reforming reactions where low H2/CO ratio synthesis gas, such as less than 2.3 is generated directly is disclosed. The catalyst comprises from about 25 wt % to about 98 wt % alumina, from about 0.5 wt % to about 35 wt % calcium oxide, from about 0.01 wt % to about 35 wt % of a promoter, and from about 0.05 wt % to about 30 wt % of an active metal. The promoter is selected from the group consisting of titanium, zirconium, yttrium, niobium, elements of the lanthanum-series, such as, without limitation, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, ytterbium, and combinations thereof. The active metal is selected from the group consisting of nickel, cobalt, rhodium, ruthenium, palladium, platinum, iridium and combinations thereof as active metal, wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 3, 2010
    Assignee: Sud-Chemie Inc.
    Inventors: Shizhong Zhao, Yeping Cai, Xiao D. Hu, Jon P. Wagner, Jürgen Ladebeck, R. Steve Spivey