Patents by Inventor Yet-Ming Chiang

Yet-Ming Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120263986
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 18, 2012
    Applicant: A123 SYSTEMS, INC.
    Inventors: Ricardo FULOP, Yet-Ming CHIANG, Karen E. THOMAS-ALYEA, William H. GARDNER
  • Publication number: 20120251896
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionicaily conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Application
    Filed: May 15, 2012
    Publication date: October 4, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Patent number: 8277975
    Abstract: The effective ionic conductivity in a composite structure is believed to decrease rapidly with volume fraction. A system, such as a bipolar device or energy storage device, has structures or components in which the diffusion length or path that electrodes or ions must traverse is minimized and the interfacial area exposed to the ions or electrons is maximized. The device includes components that can be reticulated or has a reticulated interface so that an interface area can be increased. The increased interfacial perimeter increases the available sites for reaction of ionic species. Many different reticulation patterns can be used. The aspect ratio of the reticulated features can be varied. Such bipolar devices can be fabricated by a variety of methods or procedures. A bipolar device having structures of reticulated interface can be tailored for the purposes of controlling and optimizing charge and discharge kinetics.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: October 2, 2012
    Assignee: Massachusetts Intitute of Technology
    Inventors: Yet-Ming Chiang, Benjamin Hellweg
  • Publication number: 20120244444
    Abstract: The present invention generally relates to batteries or other electrochemical devices, and systems and materials for use in these, including novel electrode materials and designs. In some embodiments, the present invention relates to small-scale batteries or microbatteries. For example, in one aspect of the invention, a battery may have a volume of no more than about 5 mm3, while having an energy density of at least about 400 W h/l. In some cases, the battery may include an electrode comprising a porous electroactive compound. In some embodiments, the pores of the porous electrode may be at least partially filled with a liquid such as a liquid electrolyte. The electrode may be formed from a unitary material. Other aspects of the invention are directed to techniques of making such electrodes or batteries, techniques of forming electrical connections to and packaging such batteries, techniques of using such electrodes or batteries, or the like.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 27, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Ryan C. Wartena, Timothy E. Chin, Can K. Erdonmez, Wei Lai
  • Publication number: 20120231308
    Abstract: Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 13, 2012
    Inventors: Yet-Ming CHIANG, Andrew C. CHU, Young-II JANG, Nonglak MEETHONG, Yu-Hua KAO, Gilbert N. RILEY, JR., Anthony E. PULLEN, Karen E. THOMAS-ALYEA
  • Publication number: 20120214071
    Abstract: A compound comprising a composition Ax(M?1?aM?a)y(XD4)z, Ax(M?1?aM?a)y(DXD4)z, or Ax(M?1?aM?a)y(X2D7)z, (A1?aM?a)xM?y(XD4)z, (A1?aM?a)xM?y(DXD4)z, or (A1?aM?a)xM?y(X2D7)z. In the compound, A is at least one of an alkali metal and hydrogen, M? is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M? any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001<a?0.1, and x, y, and z are greater than zero. The compound can be used in an electrochemical device including electrodes and storage batteries.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 23, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Sung-Yoon Chung, Jason T. Bloking, Anna M. Andersson
  • Patent number: 8247946
    Abstract: The present invention provides systems, devices, and related methods, involving electrochemical actuation. In some cases, application of a voltage or current to a system or device of the invention may generate a volumetric or dimensional change, which may produce mechanical work. For example, at least a portion of the system may be constructed and arranged to be displaced from a first orientation to a second orientation. Systems such as these may be useful in various applications, including pumps (e.g., infusion pumps) and drug delivery devices, for example.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: August 21, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Michael J. Cima, Timothy E. Chin
  • Patent number: 8241789
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 14, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Publication number: 20120175998
    Abstract: Devices and methods for providing electrochemical actuation are described herein. In one embodiment, an actuator device includes an electrochemical cell including a negative electrode and a positive electrode At least a portion of the negative electrode is formed with a material formulated to at least one of intercalate, de-intercalate, alloy with, oxidize, reduce, or plate with a first portion of the positive electrode to an extent different than with a second portion of the positive electrode such that a differential strain is imparted between the first portion and the second portion of the positive electrode and such that at least a portion of the electrochemical cell is displaced. The electrochemical cell includes a portion that is pre-bent along an axis of the electrochemical cell to define a fold axis and the displacement of the at least a portion of the electrochemical cell is maximized along the fold axis.
    Type: Application
    Filed: December 16, 2011
    Publication date: July 12, 2012
    Applicants: SpringLeaf Therapeutics, Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Timothy E. Chin, Michael J. Cima, J. Richard Gyory
  • Publication number: 20120164499
    Abstract: The present invention is related to electrochemical energy generation devices including at least one electrode comprising an electrochemically active fluid that is enclosed within the cell, as well as related articles, systems, and methods. In some embodiments, the anode and/or cathode of the electrochemical energy generation devices described herein can be formed of an electrochemically active fluid, such as a semi-solid or a redox active ion-storing liquid. The electrochemical energy generation device can be configured such that the anode and/or cathode can be flowed into their respective electrode compartments, for example, during assembly. During operation, on the other hand, little or none of the electrochemically active fluid(s) are transported into or out of the energy generation device (e.g., out of the electrode compartments of the electrochemical energy generation device).
    Type: Application
    Filed: August 18, 2011
    Publication date: June 28, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, W. Craig Carter, Mihai Duduta, Bryan Y. Ho
  • Patent number: 8206469
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 26, 2012
    Assignees: A123 Systems, Inc., Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William D. Moorehead, Antoni S. Gozdz, Richard K. Holman, Andrew L. Loxley, Gilbert N. Riley, Jr., Michael S. Viola
  • Patent number: 8206468
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 26, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William Douglas Moorehead
  • Publication number: 20120146453
    Abstract: The present invention provides systems, devices, and related methods, involving electrochemical actuation. In some cases, application of a voltage or current to a system or device of the invention may generate a volumetric or dimensional change, which may produce mechanical work. For example, at least a portion of the system may be constructed and arranged to be displaced from a first orientation to a second orientation. Systems such as these may be useful in various applications, including pumps (e.g., infusion pumps) and drug delivery devices, for example.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Michael J. Cima, Timothy E. Chin
  • Patent number: 8187735
    Abstract: Electroactive compositions are disclosed for use in lithium ion battery electrodes. The compositions, such as multifunctional mixed metal olivines, provide an electrochemical cell having a plurality of open circuit voltages at different states of charge. The compositions afford improved state-of-charge monitoring, overcharge protection and/or overdischarge protection for lithium ion batteries.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 29, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Yet-Ming Chiang, Andrew C. Chu, Young-Il Jang, Nonglak Meethong, Yu-Hua Kao, Gilbert N. Riley, Jr., Anthony E. Pullen, Karen E. Thomas-Alyea
  • Patent number: 8168326
    Abstract: An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: May 1, 2012
    Assignees: A123 Systems, Inc., Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, William D. Moorehead, Antoni S. Gozdz, Richard K. Holman, Andrew L. Loxley, Gilbert N. Riley, Jr., Michael S. Viola
  • Patent number: 8163410
    Abstract: A battery management system includes one or more lithium ion cells in electrical connection, each said cell comprising: first and second working electrodes and one or more reference electrodes, each reference electrode electronically isolated from the working electrodes and having a separate tab or current collector exiting the cell and providing an additional terminal for electrical measurement; and a battery management system comprising a battery state-of-charge monitor, said monitor being operable for receiving information relating to the potential difference of the working electrodes and the potential of one or more of the working electrodes versus the reference electrode.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: April 24, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Ricardo Fulop, Yet-Ming Chiang, Karen E. Thomas-Alyea, William H. Gardner
  • Patent number: 8158090
    Abstract: Amorphous or partially amorphous nanoscale ion storage materials are provided. For example, lithium transition metal phosphate storage compounds are nanoscale and amorphous or partially amorphous in an as-prepared state, or become amorphous or partially amorphous upon electrochemical intercalation or de-intercalation by lithium. These nanoscale ion storage materials are useful for producing devices such as high energy and high power storage batteries.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 17, 2012
    Assignee: A123 Systems, Inc.
    Inventors: Yet-Ming Chiang, Anthony E. Pullen, Nonglak Meethong
  • Patent number: 8148013
    Abstract: A compound comprising a composition Ax(M?1-aM?a)y(XD4)z, Ax(M?1-aM?a)y(DXD4)z, or Ax(M?1-aM?a)y(X2D7)z, and have values such that x, plus y(1?a) times a formal valence or valences of M?, plus ya times a formal valence or valence of M?, is equal to z times a formal valence of the XD4, X2D7, or DXD4 group; or a compound comprising a composition (A1-aM?a)xM?y(XD4)z, (A1-aM?a)xM?y(DXD4)z (A1-aM?a)xM?y(X2D7)z and have values such that (1?a)x plus the quantity ax times the formal valence or valences of M? plus y times the formal valence or valences of M? is equal to z times the formal valence of the XD4, X2D7 or DXD4 group. In the compound, A is at least one of an alkali metal and hydrogen, M? is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M? any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001<a?0.1, and x, y, and z are greater than zero.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Sung-Yoon Chung, Jason T. Bloking, Anna M. Andersson
  • Patent number: 8148009
    Abstract: The effective ionic conductivity in a composite structure is believed to decrease rapidly with volume fraction. A system, such as a bipolar device or energy storage device, has structures or components in which the diffusion length or path that electrodes or ions must traverse is minimized and the interfacial area exposed to the ions or electrons is maximized. In some embodiments, electrodes comprising a plurality of channels are provided, wherein the electrodes are constructed and arranged to allow diffusion of an ionic species from an electrolyte to a surface thereof. The device includes components that can be reticulated or has a reticulated interface so that an interface area can be increased. The increased interfacial perimeter increases the available sites for reaction of ionic species. The aspect ratio of the reticulated features can be varied. Such bipolar devices can be fabricated by a variety of methods or procedures.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 3, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Benjamin Hellweg
  • Publication number: 20120025671
    Abstract: The present invention provides devices and structures and methods of use thereof in electrochemical actuation. This invention provides electrochemical actuators, which are based, inter-alia, on an electric field-driven intercalation or alloying of high-modulus inorganic compounds, which can produce large and reversible volume changes, providing high actuation energy density, high actuation authority and large free strain.
    Type: Application
    Filed: March 4, 2011
    Publication date: February 2, 2012
    Applicant: Massachusetts Institute Of Technology
    Inventors: Yet-Ming Chiang, Steven R. Hall, Yukinori Koyama, Kyungyeol Song, Timothy E. Chin, Urs Rhyner, Dimitrios Sapnaras, Fernando Tubilla