Patents by Inventor Yeu-Kuang Hwu

Yeu-Kuang Hwu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8461224
    Abstract: A method of synthesizing a random copolymer of polyethyleneimine and polyethylene glycol, comprising exposing ethanolamine in a solution to electromagnetic radiation for a sufficient time to polymerize the ethanolamine (OHCH2CH2NH2) and thereby resulting in formation of the randome copolymer comprising polyethyleneimine and poly(ethylene glycol), wherein the polyethyleneimine comprises ethyleneimine (—CH2CH2NH—) unit and the polyethylene glycol comprises ethylene glycol (—CH2CH2O—) unit, and the polyethylenimine of the random copolymer has a substantially linear backbone.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: June 11, 2013
    Assignee: National Health Research Institutes
    Inventors: Shu-Yi Lin, Chung-Shi Yang, Yeu-Kuang Hwu
  • Publication number: 20130131151
    Abstract: A method for preparing a hydrogel includes the steps of injecting a precursor with at least two alkene groups into a predetermined portion, injecting at least one specie into the predetermined portion, and performing an X-ray irradiation on the predetermined portion to induce a polymerization reaction of the precursor to form a porous hydrogel with the specie embedded inside the porous hydrogel. In one embodiment of the present invention, the specie is selected from the group consisting of nucleic acid and adhesion agent.
    Type: Application
    Filed: February 24, 2012
    Publication date: May 23, 2013
    Applicant: INSTITUTE OF PHYSICS, ACADEMIA SINICA
    Inventors: YEU KUANG HWU, S JA TSENG
  • Publication number: 20120225924
    Abstract: A method of synthesizing a random copolymer of polyethyleneimine and polyethylene glycol, comprising exposing ethanolamine in a solution to electromagnetic radiation for a sufficient time to polymerize the ethanolamine (OHCH2CH2NH2) and thereby resulting in formation of the randome copolymer comprising polyethyleneimine and poly(ethylene glycol), wherein the polyethyleneimine comprises ethyleneimine (—CH2CH2NH—) unit and the polyethylene glycol comprises ethylene glycol (—CH2CH2O—) unit, and the polyethylenimine of the random copolymer has a substantially linear backbone.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: NATIONAL HEALTH RESEARCH INSTITUTES
    Inventors: Shu-Yi Lin, Chung-Shi Yang, Yeu-Kuang Hwu
  • Publication number: 20120130053
    Abstract: A method of synthesizing ligand-conjugated gold nanoparticles (AuNPs) is disclosed. The method comprises: a) providing an amine-modified silica particle; b) providing a solution comprising Au+3 ions; c) suspending the amine-modified silica particle in the solution comprising Au+3 ions; d) allowing the Au3+ ions to be adsorbed and/or immobilized onto the surface of the amine-modified silica particle; e) exposing the Au3+ ions immobilized onto the surface of the amine-modified silica particle to radiation to obtain bare gold nanoparticles (AuNPs) adsorbed and/or immobilized onto the surface of the amine-modified silica particle, wherein the bare AuNPs are without organic surface modifications; and f) reacting a ligand with the bare AuNPs adsorbed and/or immobilized onto the surface of the amine-modified SiNP and thereby obtain ligand-conjugated gold nanoparticles (AuNPs).
    Type: Application
    Filed: May 17, 2011
    Publication date: May 24, 2012
    Applicant: NATIONAL HEALTH RESEARCH INSTITUTES
    Inventors: CHIA-HUNG LEE, WEI-NENG LIAO, SHIH-HSUN CHENG, JEN-KUN CHEN, CHUNG-SHI YANG, LEU-WEI LO, YEU-KUANG HWU, FONG-SIAN LIN
  • Publication number: 20120052573
    Abstract: A method of synthesizing polyethyleneimine with a substantially linear backbone is disclosed. The method comprises exposing ethylenediamine dissolved in a solution to electromagnetic radiation for a sufficient time to polymerize the ethylenediamine and thereby resulting in formation of polyethylenimine with a substantially linear backbone in the solution. A method of synthesizing a homopolymer with a substantially linear backbone is also disclosed. In addition, a composition comprising polyethylenimine synthesized from the aforementioned method is disclosed, in which the polyethylenimine comprises a backbone conformation that is substantially linear and has a distribution of molecular weights (MW) ranging from 1 kDa to 200 kDa; and the polyethyleneimine has no cytotoxicity at a concentration of 12 ?g/ml.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Applicant: NATIONAL HEALTH RESEARCH INSTITUTES
    Inventors: Shu-Yi LIN, Fong-Sian LIN, Meng-Kai CHEN, Yu-Chen JAO, Lin-Ren TSAI, Hong-Yi LIN, Chung-Shi YANG, Yeu-Kuang HWU
  • Publication number: 20110288409
    Abstract: Images of blood vessels of a body are obtained by injecting a refraction enhancement contrast agent into the blood vessels to increase a difference in refractive indices of the blood vessels and surrounding material. The blood vessels are irradiated with a penetrating radiation, and an image of the blood vessels is generated based on detected radiation. The image has visible edge enhancement features indicating boundaries of the blood vessels.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Inventors: Yeu-Kuang Hwu, Giorgio Margaritondo, Jung Ho Je
  • Patent number: 7991454
    Abstract: Images of blood vessels of a body are obtained by injecting a refraction enhancement contrast agent into the blood vessels to increase a difference in refractive indices of the blood vessels and surrounding material. The blood vessels are irradiated with a penetrating radiation, and an image of the blood vessels is generated based on detected radiation. The image has visible edge enhancement features indicating boundaries of the blood vessels.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: August 2, 2011
    Assignee: Academia Sinica
    Inventors: Yeu-Kuang Hwu, Giorgio Margaritondo, Jung Ho Je
  • Publication number: 20110044900
    Abstract: A method for treating and/or diagnosing a tumor is provided. The method includes administrating an effective amount of gold particles to a subject in need thereof, and observing the distribution of the gold particles in the subject, wherein the gold particles are coated with a polymer, and the gold particle has a size of about 6.1±1.9 nm.
    Type: Application
    Filed: August 22, 2009
    Publication date: February 24, 2011
    Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
  • Publication number: 20100248297
    Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.
    Type: Application
    Filed: August 22, 2009
    Publication date: September 30, 2010
    Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
  • Publication number: 20090308754
    Abstract: The present invention provides a method of fabricating a micro hollow tube, more specifically, a method of fabricating a micro hollow tube by template-free localized electrochemical deposition, in which the micro hollow tube is fabricated by the accurate control of the distribution of the electric field strength during deposition with precise interplay of the applied voltage and the distance between the microelectrode and the grown structure.
    Type: Application
    Filed: July 17, 2009
    Publication date: December 17, 2009
    Inventors: Seung Kwon Seol, Jung Ho Je, Yeu Kuang Hwu
  • Publication number: 20090202650
    Abstract: A method of treating cancer. The method includes introducing an effective amount of an oxidative catalyzing agent including titanium oxide, zinc oxide, zirconium oxide, tungsten oxide or tin oxide into a biological entity, and irradiating the biological entity with a ray. The oxidative catalyzing agent produces hydroxyl or hydrogen peroxide radicals after irradiation with the ray thereon.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Inventors: Yeu-Kuang Hwu, Tsung-Yeh Yang, Chi-Jen Liu, Chang-Hai Wang
  • Publication number: 20040176677
    Abstract: Images of blood vessels of a body are obtained by injecting a refraction enhancement contrast agent into the blood vessels to increase a difference in refractive indices of the blood vessels and surrounding material. The blood vessels are irradiated with a penetrating radiation, and an image of the blood vessels is generated based on detected radiation. The image has visible edge enhancement features indicating boundaries of the blood vessels.
    Type: Application
    Filed: May 8, 2003
    Publication date: September 9, 2004
    Inventors: Yeu-Kuang Hwu, Giorgio Margaritondo, Jung Ho Je
  • Patent number: 6526121
    Abstract: A new radiography method which utilizes contrast enhancement mechanisms with highly collimated X-ray beams without optics to achieve high imaging resolution and improve the time resolution is disclosed. This invention includes irradiating the object with an unmonochromatized beam, specifically highly collimated synchrotron radiation, and detecting an unmonochromatized beam image after the unmonochromatized beam has passed through the object. With compact design, a system for imaging an object with very high resolution, X-ray radiography with a wide range of X-ray sources, such as synchrotron radiation, without any sophisticated X-ray optics is also disclosed. This invention may achieve real-time images with micrometer resolution.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: February 25, 2003
    Inventors: Yeu-Kuang Hwu, Jung Ho Je, Giorgio Margaritondo