Patents by Inventor Yevgen VORONENKO

Yevgen VORONENKO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240104767
    Abstract: Disclosed herein are methods and systems for identifying the location of a target region using a tumor identification (ID) profile. A tumor ID profile includes identification parameters that characterize the target region. The tumor ID profile may be used to facilitate the identification of multiple target regions and to evaluate whether it is safe to deliver radiation to the target regions at their updated locations. Also disclosed herein are methods for analyzing a dose distribution to a target region by generating a bounded dose volume histogram (bDVH) based on gamma criteria comprising a distance-to-agreement (DTA) criterion and a dose difference (DD) criterion. In one variation, a gamma-derived bDVH is used in a method for selecting gamma criteria values for evaluating a radiotherapy treatment plan.
    Type: Application
    Filed: August 25, 2023
    Publication date: March 28, 2024
    Inventors: Yevgen VORONENKO, Maksat HAYTMYRADOV, Peter Demetri OLCOTT, Lingxiong SHAO, Manoj V. NARAYANAN
  • Publication number: 20240082605
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Application
    Filed: September 21, 2023
    Publication date: March 14, 2024
    Inventors: Yevgen VORONENKO, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Publication number: 20230390585
    Abstract: Described herein is a graphical user interface that receives a user-specified treatment time value and displays the resultant dose distributions to a target region and/or organs-at-risk (OARs). The dose distributions are depicted as dose volume histograms (DVHs). The user-specified treatment time value may be adjusted as desired and the DVHs for the target region and/or OARs may be correspondingly updated. In some variations, the graphical user interface may comprise bounded DVHs for the target region and/or OARs, where bounds of the DVH represent the range of dose variability between a short treatment time (e.g., Tmin) and a long treatment time (e.g., Tmax). In some variations, the graphical user interface includes a command button that triggers fluence map optimization using the user-specified treatment time.
    Type: Application
    Filed: August 23, 2023
    Publication date: December 7, 2023
    Inventors: Aleksei PRIVALIKHIN, Yevgen VORONENKO, Peter Demetri OLCOTT
  • Publication number: 20230390580
    Abstract: Disclosed herein are systems and methods for adapting and/or updating radiotherapy treatment plans based on biological and/or physiological data and/or anatomical data extracted or calculated from imaging data acquired in real-time (e.g., during a treatment session). Functional imaging data acquired at the time of radiation treatment is used to modify a treatment plan and/or dose delivery instructions to provide a prescribed dose distribution to patient target regions. Also disclosed herein are methods for evaluating treatment plans based on imaging data acquired in real-time.
    Type: Application
    Filed: April 4, 2023
    Publication date: December 7, 2023
    Inventors: Michael Kirk Owens, Rostem BASSALOW, Peter Demetri OLCOTT, Yevgen VORONENKO, David Quentin LARKIN, Samuel MAZIN
  • Patent number: 11813481
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: November 14, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Debashish Pal, Ayan Mitra, Christopher Eric Brown, Peter Demetri Olcott, Yevgen Voronenko, Rostem Bassalow
  • Publication number: 20230356003
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Application
    Filed: March 9, 2023
    Publication date: November 9, 2023
    Inventors: Yevgen VORONENKO, Peter Demetri Olcott, Debashish Pal, Rostem Bassalow
  • Patent number: 11801398
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: October 31, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Publication number: 20230256266
    Abstract: Disclosed herein are methods for radiotherapy treatment planning and delivery that use sensor data from one or more target sensors. One variation of a radiotherapy treatment planning method comprises generating a sensor characterization image based on a sensor characterization probability density function (PDF) of a target sensor and calculating a set of firing filters that may be applied to sensor images generated from sensor data acquired during a radiation-delivery session. Additionally, a variation of a radiotherapy treatment planning method comprises generating multiple sensor characterization images based on multiple sensor characterization PDF of multiple target sensors and calculating multiple sets of firing filters for each of the multiple target sensors.
    Type: Application
    Filed: February 1, 2023
    Publication date: August 17, 2023
    Inventor: Yevgen VORONENKO
  • Patent number: 11648418
    Abstract: Disclosed herein are systems and methods for adapting and/or updating radiotherapy treatment plans based on biological and/or physiological data and/or anatomical data extracted or calculated from imaging data acquired in real-time (e.g., during a treatment session). Functional imaging data acquired at the time of radiation treatment is used to modify a treatment plan and/or dose delivery instructions to provide a prescribed dose distribution to patient target regions. Also disclosed herein are methods for evaluating treatment plans based on imaging data acquired in real-time.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: May 16, 2023
    Assignee: Reflexion Medical, Inc.
    Inventors: Michael Kirk Owens, Rostem Bassalow, Peter Demetri Olcott, Yevgen Voronenko, David Quentin Larkin, Samuel Mazin
  • Patent number: 11633626
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: April 25, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Peter Demetri Olcott, Debashish Pal, Rostem Bassalow
  • Publication number: 20230087425
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Application
    Filed: July 29, 2022
    Publication date: March 23, 2023
    Inventors: Debashish PAL, Ayan MITRA, Christopher Eric BROWN, Peter Demetri OLCOTT, Yevgen VORONENKO, Rostem BASSALOW
  • Publication number: 20230067048
    Abstract: This application relates to methods for delivering radiation to a positron-emitting target within a subject under continuous PET guidance. Instead of directing radiation at a collinear path along each detected positron line-of-response (LOR), the methods generally include detecting a pattern of LORs that intersect the target. In response to the pattern, radiation may be delivered along paths that are not necessarily collinear to any of the LORs. Methods for further modifying radiation delivery as well as the detected LOR population are also described.
    Type: Application
    Filed: June 30, 2022
    Publication date: March 2, 2023
    Inventors: Yevgen VORONENKO, Rostem BASSALOW, Peter OLCOTT, Brent HARPER, David LARKIN
  • Publication number: 20220288422
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Yevgen VORONENKO, Jayakrishnan JANARDHANAN, Debashish PAL, Rostem BASSALOW, Peter Demetri OLCOTT, Michael Kirk OWENS
  • Patent number: 11439844
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: September 13, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Debashish Pal, Ayan Mitra, Christopher Eric Brown, Peter Demetri Olcott, Yevgen Voronenko, Rostem Bassalow
  • Patent number: 11406846
    Abstract: This application relates to methods for delivering radiation to a positron-emitting target within a subject under continuous PET guidance. Instead of directing radiation at a collinear path along each detected positron line-of-response (LOR), the methods generally include detecting a pattern of LORs that intersect the target. In response to the pattern, radiation may be delivered along paths that are not necessarily collinear to any of the LORs. Methods for further modifying radiation delivery as well as the detected LOR population are also described.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 9, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Rostem Bassalow, Peter Olcott, Brent Harper, David Larkin
  • Patent number: 11358008
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 14, 2022
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Publication number: 20220126117
    Abstract: Disclosed herein are methods for patient setup and patient target region localization for the irradiation of multiple patient target regions in a single treatment session. Virtual localization is a method that can be used to register a patient target region without requiring that the patient is physically moved using the patient platform. Instead, the planned fluence is updated to reflect the current location of the patient target region by selecting a localization reference in the localization image, calculating a localization function based on the localization reference point, and calculating the delivery fluence by convolving the localization function with a shift-invariant firing filter. Mosaic multi-target localization partitions a planned fluence map for multiple patient target regions into sub-regions that can be individually localized.
    Type: Application
    Filed: January 7, 2022
    Publication date: April 28, 2022
    Inventors: Yevgen VORONENKO, Debashish PAL, David Quentin LARKIN, George ZDASIUK, Jayakrishnan JANARDHANAN, Michael Kirk OWENS, Peter Demetri OLCOTT
  • Publication number: 20210236854
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Yevgen VORONENKO, Peter Demetri OLCOTT, Debashish PAL, Rostem BASSALOW
  • Patent number: 11033757
    Abstract: Disclosed herein are systems and methods for guiding the delivery of therapeutic radiation using incomplete or partial images acquired during a treatment session. A partial image does not have enough information to determine the location of a target region due to, for example, poor or low contrast and/or low SNR. The radiation fluence calculation methods described herein do not require knowledge or calculation of the target location, and yet may help to provide real-time image guided radiation therapy using arbitrarily low SNR images.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 15, 2021
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Peter Demetri Olcott, Debashish Pal, Rostem Bassalow
  • Publication number: 20210128947
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Applicant: RefleXion Medical, Inc.
    Inventors: Debashish PAL, Ayan MITRA, Christopher Eric BROWN, Peter Demetri OLCOTT, Yevgen VORONENKO, Rostem BASSALOW