Patents by Inventor Yevgeniy Churin

Yevgeniy Churin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11119384
    Abstract: Disclosed are methods and apparatus for hermetically sealing a nonlinear optical (NLO) crystal for use in a laser system. A mounted NLO crystal, an enclosure base, a lid, and a plurality of window components are moved into an oven. A vacuum bake process is then performed on the mounted NLO crystal, enclosure base, lid, and plurality of window components until a humidity level that is less than a predefined amount is reached. The mounted NLO crystal, enclosure base, lid, and plurality of window components are moved from the oven onto a stage of a glove box that includes a sealing tool. In the glove box, the mounted NLO crystal is hermetically sealed into the enclosure base by sealing the lid and plurality of window components into openings of the enclosure base.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: September 14, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Rajeev Patil, David Ramirez, Yevgeniy Churin, William Replogle
  • Publication number: 20190094653
    Abstract: Disclosed are methods and apparatus for hermetically sealing a nonlinear optical (NLO) crystal for use in a laser system. A mounted NLO crystal, an enclosure base, a lid, and a plurality of window components are moved into an oven. A vacuum bake process is then performed on the mounted NLO crystal, enclosure base, lid, and plurality of window components until a humidity level that is less than a predefined amount is reached. The mounted NLO crystal, enclosure base, lid, and plurality of window components are moved from the oven onto a stage of a glove box that includes a sealing tool. In the glove box, the mounted NLO crystal is hermetically sealed into the enclosure base by sealing the lid and plurality of window components into openings of the enclosure base.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 28, 2019
    Applicant: KLA-Tencor Corporation
    Inventors: Rajeev Patil, David Ramirez, Yevgeniy Churin, William Replogle
  • Patent number: 10060884
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: August 28, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9891175
    Abstract: A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 13, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie M. Sullivan, Yevgeniy Churin
  • Publication number: 20160327493
    Abstract: A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
    Type: Application
    Filed: December 29, 2015
    Publication date: November 10, 2016
    Inventors: Jamie M. Sullivan, Yevgeniy Churin
  • Publication number: 20160290971
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. The predetermined spacing can be a scan length or an integral number of scan lengths. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Patent number: 9423357
    Abstract: One embodiment relates to an oblique illuminator. The oblique illuminator includes a light source emitting a light beam, a first reflective surface, and a second reflective surface. The first reflective surface has a convex cylindrical shape with a projected parabolic profile along the non-powered direction which is configured to reflect the light beam from the light source and which defines a focal line. The second reflective surface has a concave cylindrical shape with a projected elliptical profile which is configured to reflect the light beam from the first reflective surface and which defines first and second focal lines. The focal line of the first reflective surface is coincident with the first focal line of the second reflective surface. The first and second focal lines of the second reflective surface may be a same line in which case the elliptical curvature is a projected spherical profile. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: August 23, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Shiyu Zhang, Charles N. Wang, Yevgeniy Churin, Yong-Mo Moon, Hyoseok Daniel Yang, Mark S. Wang
  • Patent number: 9395340
    Abstract: A method of scanning a sample includes simultaneously forming a plurality of co-linear scans. Each scan is formed by a sweep of a spot by an acousto-optical device (AOD). The co-linear scans are separated by a predetermined spacing. A first plurality of swaths are formed by repeating the simultaneous forming of the plurality of co-linear scans in a direction perpendicular to the co-linear scans. The first plurality of swaths have an inter-swath spacing that is the same as the predetermined spacing. A second plurality of swaths can be formed adjacent to the first plurality of swaths. Forming the second plurality of swaths can be performed in an opposite direction to that of the first plurality of swaths or in a same direction. An inspection system can implement this method by including a diffractive optical element (DOE) path after a magnification changer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 19, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Jamie Sullivan, Wenjian Cai, Yevgeniy Churin, Ralph Johnson, Meier Yitzhak Brender, Mark Shi Wang, Rex Runyon, Kai Cao
  • Publication number: 20140299779
    Abstract: One embodiment relates to an oblique illuminator. The oblique illuminator includes a light source emitting a light beam, a first reflective surface, and a second reflective surface. The first reflective surface has a convex cylindrical shape with a projected parabolic profile along the non-powered direction which is configured to reflect the light beam from the light source and which defines a focal line. The second reflective surface has a concave cylindrical shape with a projected elliptical profile which is configured to reflect the light beam from the first reflective surface and which defines first and second focal lines. The focal line of the first reflective surface is coincident with the first focal line of the second reflective surface. The first and second focal lines of the second reflective surface may be a same line in which case the elliptical curvature is a projected spherical profile. Other embodiments, aspects and features are also disclosed.
    Type: Application
    Filed: May 28, 2014
    Publication date: October 9, 2014
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Shiyu ZHANG, Charles N. WANG, Yevgeniy CHURIN, Yong-Mo MOON, Hyoseok Daniel YANG, Mark S. WANG
  • Patent number: 8794801
    Abstract: One embodiment relates to an oblique illuminator. The oblique illuminator includes a light source emitting a light beam, a first reflective surface, and a second reflective surface. The first reflective surface has a convex cylindrical shape with a projected parabolic profile along the non-powered direction which is configured to reflect the light beam from the light source and which defines a focal line. The second reflective surface has a concave cylindrical shape with a projected elliptical profile which is configured to reflect the light beam from the first reflective surface and which defines first and second focal lines. The focal line of the first reflective surface is coincident with the first focal line of the second reflective surface. The first and second focal lines of the second reflective surface may be a same line in which case the elliptical curvature is a projected spherical profile. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: August 5, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Shiyu Zhang, Charles N. Wang, Yevgeniy Churin, Yong-Mo Moon, Hyoseok Daniel Yang, Mark S. Wang
  • Publication number: 20120218545
    Abstract: One embodiment relates to an oblique illuminator. The oblique illuminator includes a light source emitting a light beam, a first reflective surface, and a second reflective surface. The first reflective surface has a convex cylindrical shape with a projected parabolic profile along the non-powered direction which is configured to reflect the light beam from the light source and which defines a focal line. The second reflective surface has a concave cylindrical shape with a projected elliptical profile which is configured to reflect the light beam from the first reflective surface and which defines first and second focal lines. The focal line of the first reflective surface is coincident with the first focal line of the second reflective surface. The first and second focal lines of the second reflective surface may be a same line in which case the elliptical curvature is a projected spherical profile. Other embodiments, aspects and features are also disclosed.
    Type: Application
    Filed: July 26, 2011
    Publication date: August 30, 2012
    Inventors: Shiyu Zhang, Charles N. Wang, Yevgeniy Churin, Yong-Mo Moon, Hyoseok Daniel Yang, Mark S. Wang
  • Patent number: 6898348
    Abstract: A method and apparatus is described for controlling the attenuation of multiple wavelengths signals propagating in an optical fiber, that may have a time-dependent power in each signal, to provide an output signal having a desired attenuated power in each of the multiple signals. An equalizer may be used that has various optical elements to focus and disperse light, such as a concave diffraction grating and a modulator array having modulators disposed on a concave surface. The equalizer may also be coupled to various components such as a circulator or thermally expanded core fibers.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: May 24, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Valentine N. Morozov, Yevgeniy Churin, Jinxi Shen
  • Patent number: 6700664
    Abstract: An optical channel monitoring device uses a linear variable filter (LVF) disposed in the path of a beam of light for selectively transmitting light in a variable manner along a length of the filter, a photodetector array positioned in the path of light transmitted through the LVF for measuring spectral characteristics of the transmitted light, and collimating means disposed between the input port and the LVF for collimating said beam of light. The device is a low-cost, compact and rugged high-resolution spectrometer for various uses.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: March 2, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Tokuyuki Honda, Yevgeniy Churin, Long Yang
  • Publication number: 20040032584
    Abstract: An optical channel monitoring device uses a linear variable filter (LVF) disposed in the path of a beam of light for selectively transmitting light in a variable manner along a length of the filter, a photodetector array positioned in the path of light transmitted through the LVF for measuring spectral characteristics of the transmitted light, and collimating means disposed between the input port and the LVF for collimating said beam of light. The device is a low-cost, compact and rugged high-resolution spectrometer for various uses.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Inventors: Tokuyuki Honda, Yevgeniy Churin, Long Yang
  • Patent number: 6678445
    Abstract: A dynamic gain flattening filter is provided that offers a smooth spectral response. The filter includes an input/output port for launching a beam of light, a dispersive element for dispersing the beam of light into a plurality of monochromatic sub-beams of light, and discrete array of controllable elements for receiving the plurality of sub-beams of light. The filter is designed such that each sub-beam of light is incident on more than one element of the discrete array for selective attenuation before being recombined by the dispersive element and redirected back to the input/output port. In another embodiment, a beam-folding mirror is provided to direct the attenuated beam to a separate output port.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: January 13, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: W. John Tomlinson, Valentine N. Morozov, Yevgeniy Churin, Brian Lee Heffner, Long Yang, Jinxi Shen
  • Publication number: 20020067888
    Abstract: A method and apparatus is described for controlling the attenuation of multiple wavelengths signals propagating in an optical fiber, that may have a time-dependent power in each signal, to provide an output signal having a desired attenuated power in each of the multiple signals. An equalizer may be used that has various optical elements to focus and disperse light, such as a concave diffraction grating and a modulator array having modulators disposed on a concave surface. The equalizer may also be coupled to various components such as a circulator or thermally expanded core fibers.
    Type: Application
    Filed: March 28, 2001
    Publication date: June 6, 2002
    Inventors: Valentine N. Morozov, Yevgeniy Churin, Jinxi Shen
  • Publication number: 20020067887
    Abstract: A dynamic gain flattening filter is provided that offers a smooth spectral response. The filter includes an input/output port for launching a beam of light, a dispersive element for dispersing the beam of light into a plurality of monochromatic sub-beams of light, and discrete array of controllable elements for receiving the plurality of sub-beams of light. The filter is designed such that each sub-beam of light is incident on more than one element of the discrete array for selective attenuation before being recombined by the dispersive element and redirected back to the input/output port. In another embodiment, a beam-folding mirror is provided to direct the attenuated beam to a separate output port.
    Type: Application
    Filed: December 4, 2000
    Publication date: June 6, 2002
    Inventors: W. John Tomlinson, Valentine N. Morozov, Yevgeniy Churin, Brian Lee Heffner, Long Yang, Jinxi Shen