Patents by Inventor Yevgeniy Kozlenko
Yevgeniy Kozlenko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230373663Abstract: A dock assembly includes a docking station and a stand or mount coupled to the docking station. The dock assembly may be configured for an unmanned aerial vehicle (UAV). The docking station may include a landing surface configured to interface with the UAV, an extended portion coupled to the landing surface and extending from the landing surface, and a fiducial located on the extended portion.Type: ApplicationFiled: May 16, 2023Publication date: November 23, 2023Inventors: Yevgeniy Kozlenko, Benjamin Scott Thompson, Jack Zi Qi Ye, Christopher Brian Grasberger, Gareth Benoit Cross, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry, Hayk Martirosyan
-
Publication number: 20230347765Abstract: A method of using a base station to charge an unmanned aerial vehicle (UAV) is disclosed. The method includes: docking the UAV with a cradle of the base station; retracting the cradle into an enclosure of the base station via a slide mechanism; and electrically connecting a power source of the UAV to a charging hub connected to the slide mechanism to thereby charge the power source.Type: ApplicationFiled: August 31, 2022Publication date: November 2, 2023Inventors: Patrick Allen Lowe, Yevgeniy Kozlenko, Christopher C. Berthelet, Christopher Brian Grasberger, Roderick Donald Bacon
-
Publication number: 20230348103Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV). The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; and a cradle that is connected to the slide mechanism and which defines a chamber that is configured to receive the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position. The cradle includes: an upper shell; a lower shell that is connected to the upper shell; and at least one thermal insulator that is located between the upper shell and the lower shell.Type: ApplicationFiled: August 31, 2022Publication date: November 2, 2023Inventors: Patrick Allen Lowe, Yee Shan Woo, Yevgeniy Kozlenko, Christopher C. Berthelet
-
Publication number: 20230347766Abstract: A base station for an unmanned aerial vehicle (UAV) is disclosed that includes: an enclosure defining an internal cavity that is configured to receive the UAV; a door that is movably connected to the enclosure; actuators that extend between the door and the enclosure to facilitate opening and closure of the door; a cradle that is configured to receive the UAV and which is movable in relation to the enclosure such that the cradle is repositionable between a retracted position and an extended position to facilitate movement of the UAV into and out of the enclosure; and engagement members that are secured to the actuators and which are configured for contact with propeller assemblies on the UAV to facilitate folding of the propeller assemblies during movement of the UAV into the enclosure.Type: ApplicationFiled: August 31, 2022Publication date: November 2, 2023Inventors: Christopher C. Berthelet, Shreetej Varakantam Reddy, Ioan Trayanov, Dylan Matthew Callaway, Yevgeniy Kozlenko
-
Publication number: 20230348100Abstract: A base station is disclosed for an unmanned aerial vehicle (UAV) that includes: an enclosure defining a window that is configured to receive the UAV to allow for entry of the UAV into the base station and exit of the UAV from the base station; a door that is movably connected to the enclosure such that the door is repositionable between a closed position and an open position; a sealing member that extends about the window and which is configured for engagement with the door so as to form a seal therewith in the closed position; and a heating system that is supported by the enclosure and which is configured to heat the door and/or the sealing member to support operation (e.g., opening and closure) of the door in a cold environment, wherein the heating system includes at least one light source and at least one heating element.Type: ApplicationFiled: August 31, 2022Publication date: November 2, 2023Inventors: Phoebe Josephine Altenhofen, Patrick Allen Lowe, Yevgeniy Kozlenko, Yee Shan Woo, Christopher C. Berthelet
-
Publication number: 20230348104Abstract: A base station for an unmanned aerial vehicle (UAV) is disclosed. The base station includes: an enclosure; a slide mechanism that is connected to the enclosure and which is repositionable between a retracted position and an extended position; a cradle that is connected to the slide mechanism and which is configured for docking with the UAV such that the UAV is movable into and out of the enclosure during repositioning of the slide mechanism between the retracted position and the extended position; and a charging hub that is connected to the slide mechanism and which is configured for electrical connection to a power source of the UAV to charge the power source.Type: ApplicationFiled: August 31, 2022Publication date: November 2, 2023Inventors: Patrick Allen Lowe, Yevgeniy Kozlenko, Christopher C. Berthelet, Christopher Brian Grasberger, Roderick Donald Bacon
-
Publication number: 20230166862Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: August 30, 2022Publication date: June 1, 2023Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20230144408Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: July 26, 2022Publication date: May 11, 2023Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20230002074Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: August 31, 2022Publication date: January 5, 2023Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20220411102Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: August 30, 2022Publication date: December 29, 2022Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20220411103Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: August 31, 2022Publication date: December 29, 2022Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20220355952Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: ApplicationFiled: July 26, 2022Publication date: November 10, 2022Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20220326705Abstract: An unmanned aerial vehicle (UAV) controller may have control elements configured to receive inputs from a user. A cover may be coupled to the controller. The cover may be movable between a closed position in which the control elements are covered and an open position in which the control elements are exposed. An antenna may be integrated in the cover. The antenna may be electrically connected to circuitry in the controller for communicating with a UAV. In some implementations, a conductive plane and/or an insulating plane may be integrated in the cover. In some implementations, a heatsink, a fan, and/or a support mechanism may be arranged on an under portion of the controller. In some implementations, a circuit board including a cutout may be arranged inside the controller.Type: ApplicationFiled: April 5, 2022Publication date: October 13, 2022Inventors: Benjamin Scott Thompson, Christopher Brian Grasberger, Patrick Allen Lowe, Asher Mendel Robbins-Rothman, Yevgeniy Kozlenko, Logan Sweet, Blair Williams, Joseph Anthony Enke
-
Patent number: 11453513Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.Type: GrantFiled: April 25, 2019Date of Patent: September 27, 2022Assignee: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20210403177Abstract: The technology described herein relates to autonomous aerial vehicle rotor configurations. In some embodiments, the aerial vehicle includes a central body that extends along a longitudinal axis from a forward end to an aft end including a port side opposite a starboard side. Multiple rotor arms each have a proximal end coupled to the central body and a rotor assembly arranged at a distal end to provide propulsion for the aerial vehicle. The rotor assemblies include a first set of rotor assemblies and a second set of rotor assemblies. The first set of rotor assemblies are arranged in a non-inverted configuration on a top side of the aerial vehicle such that each rotor assembly includes an upward-facing rotor. The second set of rotor assemblies are arranged in an inverted configuration on a bottom side of the aerial vehicle such that each rotor assembly includes a downward-facing rotor.Type: ApplicationFiled: May 21, 2021Publication date: December 30, 2021Applicant: Skydio, Inc.Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
-
Publication number: 20210276733Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include a landing surface configured to hold an unmanned aerial vehicle; a box configured to enclose the landing surface in a first arrangement of the dock and expose the landing surface in a second arrangement of the dock; and a retractable arm, wherein the landing surface is positioned at an end of the retractable arm and the retractable arm is configured to extend to move the landing surface outside of the box and contract to pull the landing surface inside of the box.Type: ApplicationFiled: March 31, 2021Publication date: September 9, 2021Inventors: Yevgeniy Kozlenko, Jack Zhu, Gareth Cross, Teodor Tomic, Adam Bry, Abraham Galton Bachrach
-
Publication number: 20210276734Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, a battery, and a processing apparatus; and a dock including a landing surface with a funnel geometry shaped to fit a bottom surface of the unmanned aerial vehicle at a base of the funnel, wherein tapered sides of the funnel form corners at the base of the funnel, and a battery charger configured to charge the battery of the unmanned aerial vehicle while the unmanned aerial vehicle is on the landing surface, wherein conducting contacts of the battery charger are on the landing surface, positioned at the bottom of the funnel.Type: ApplicationFiled: March 31, 2021Publication date: September 9, 2021Inventors: Yevgeniy Kozlenko, Jack Zhu, Gareth Cross, Teodor Tomic, Adam Bry, Abraham Galton Bachrach
-
Publication number: 20210214068Abstract: The technology described herein relates to autonomous aerial vehicle technology and, more specifically, to image stabilization systems for autonomous aerial vehicles. In some embodiments, a UAV including a central body, an image capture assembly that couples the image capture assembly to the central body. The image stabilization assembly is configured to provide structural protection and support around the image capture assembly while passively isolating the image capture assembly from vibrations and other motion of the central body while the UAV is in flight.Type: ApplicationFiled: January 20, 2021Publication date: July 15, 2021Inventors: Adam Parker Bry, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Asher Mendel Robbins-Rothman, Zachary Albert West, Daniel Thomas Adams, Donald Allen Severns, Patrick Allen Lowe, Benjamin Scott Thompson
-
Publication number: 20210214067Abstract: The technology described herein relates to autonomous aerial vehicle technology and, more specifically, to autonomous unmanned aerial vehicle with folding collapsible arms. In some embodiments, a UAV including a central body, a plurality of rotor arms, and a plurality of hinge mechanisms is disclosed. The plurality of rotor arms each include a rotor unit at a distal end of the rotor arm. The rotor units are configured to provide propulsion for the UAV. The plurality of hinge mechanisms mechanically attach (or couple) proximal ends of the plurality of rotor arms to the central body. Each hinge mechanism is configured to rotate a respective rotor arm of the plurality of rotor arms about an axis of rotation that is at an oblique angle relative to a vertical median plane of the central body to transition between an extended state and a folded state.Type: ApplicationFiled: January 13, 2021Publication date: July 15, 2021Inventors: Zachary Albert West, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Benjamin Scott Thompson, Abraham Galton Bachrach, Adam Parker Bry, Asher Mendel Robbins-Rothman, Brett Nicholas Randolph, Dylan Matthew Callaway, Daniel Thomas Adams
-
Publication number: 20210107682Abstract: Described herein are systems for automated docking of an unmanned aerial vehicle. For example, some systems include an unmanned aerial vehicle including a propulsion mechanism, an image sensor, and processing apparatus; and a dock including a landing surface configured to hold the unmanned aerial vehicle and a fiducial on the landing surface, wherein the processing apparatus is configured to: control the propulsion mechanism to cause the unmanned aerial vehicle to fly to a first location in a vicinity of the dock; access one or more images captured using the image sensor; detect the fiducial in at least one of the one or more images; determine a pose of the fiducial based on the one or more images; and control, based on the pose of the fiducial, the propulsion mechanism to cause the unmanned aerial vehicle to land on the landing surface.Type: ApplicationFiled: August 12, 2020Publication date: April 15, 2021Inventors: Yevgeniy Kozlenko, Jack Zhu, Gareth Benoit Cross, Teodor Tomic, Adam Bry, Abraham Galton Bachrach