Patents by Inventor Yi-Hsuan Peng

Yi-Hsuan Peng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10218418
    Abstract: This invention provides a relay precoder selection method for two-way amplify-and-forward multiple-input multiple-output (MIMO) relay systems and communication devices using the selection method or the selected relay precoder. According to the relationship between a relay precoder and the singular values of the effective MIMO channels, a set of candidate relay precoders are constructed based on the singular vector subspaces of cascaded MIMO channels, and one of them is selected for meeting a specific design criterion, such as the minimum sum of mean-squared errors, the maximum sum of channel capacities, and the minimum or maximum sum of condition numbers, where the condition number is defined as the ratio of the largest to the smallest singular value of a MIMO channel. As compared with the iterative design methods with the best performance, this invention achieves close performance while requiring much lower computational complexity.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: February 26, 2019
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chin-Liang Wang, Jyun-Yu Chen, Yi-Hsuan Peng
  • Publication number: 20170294946
    Abstract: This invention provides a relay precoder selection method for two-way amplify-and-forward multiple-input multiple-output (MIMO) relay systems and communication devices using the selection method or the selected relay precoder. According to the relationship between a relay precoder and the singular values of the effective MIMO channels, a set of candidate relay precoders are constructed based on the singular vector subspaces of cascaded MIMO channels, and one of them is selected for meeting a specific design criterion, such as the minimum sum of mean-squared errors, the maximum sum of channel capacities, and the minimum or maximum sum of condition numbers, where the condition number is defined as the ratio of the largest to the smallest singular value of a MIMO channel. As compared with the iterative design methods with the best performance, this invention achieves close performance while requiring much lower computational complexity.
    Type: Application
    Filed: October 27, 2016
    Publication date: October 12, 2017
    Inventors: Chin-Liang Wang, Jyun-Yu Chen, Yi-Hsuan Peng