Patents by Inventor Yi-Li MIN

Yi-Li MIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220096606
    Abstract: Compositions and methods for treating Duchenne Muscular Dystrophy (DMD) are encompassed.
    Type: Application
    Filed: September 8, 2021
    Publication date: March 31, 2022
    Applicant: Vertex Pharmaceuticals Incorporated
    Inventors: Jesper Gromada, Tudor Fulga, Alison McVie-Wylie, Giselle Dominguez Gutierrez, Yurong Xin, Fatih Bolukbasi, Yi-Li Min, Eric Anderson
  • Publication number: 20210261962
    Abstract: Duchenne muscular dystrophy (DMD), which affects 1 in 5,000 male births, is one of the most common genetic disorders of children. This disease is caused by an absence or deficiency of dystrophin protein in striated muscle. The major DMD deletion “hot spots” are found between exon 6 to 8, and exons 45 to 53. Here, three DMD mouse models are provided that can be used to test a variety of DMD exon skipping and refraining strategies. Among these are, CRISPR/Cas9 oligonucleotides, small molecules or other therapeutic modalities that promote exon skipping or exon refraining or micro dystrophin mini genes or cell based therapies. Methods for restoring the reading frame of exon 43, exon 45, and exon 52 deletion via CRISPR-mediated exon skipping and refraining in the humanized DMD mouse model, in patient-derived iPSCs and ultimately, in patients using various delivery systems are also contemplated. The impact of CRISPR technology on DMD is that gene editing can permanently correct mutations.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Applicant: The Board of Regents of the University of Texas System
    Inventors: Yi-Li MIN, Rhonda BASSEL-DUBY, Eric OLSON
  • Publication number: 20200275641
    Abstract: Duchenne muscular dystrophy (DMD), which affects 1 in 5,000 male births, is one of the most common genetic disorders of children. This disease is caused by an absence or deficiency of dystrophin protein in striated muscle. The major DMD deletion “hot spots” are found between exon 6 to 8, and exons 45 to 53. Here, a “humanized” mouse model is provided that can be used to test a variety of DMD exon skipping strategies. Among these are, CRISPR/Cas9 oligonucleotides, small molecules or other therapeutic modalities that promote exon skipping or micro dystrophin mini genes or cell based therapies. Methods for restoring the reading frame of exon 44 deletion via CRISPR-mediated exon skipping in the humanized mouse model, in patient-derived iPS cells and ultimately, in patients using various delivery systems are also contemplated. The impact of CRISPR technology on DMD is that gene editing can permanently correct mutations.
    Type: Application
    Filed: May 13, 2020
    Publication date: September 3, 2020
    Applicant: The Board of Regents of the University of Texas System
    Inventors: Yi-Li MIN, Rhonda BASSEL-DUBY, Eric OLSON
  • Patent number: 10687520
    Abstract: Duchenne muscular dystrophy (DMD), which affects 1 in 5,000 male births, is one of the most common genetic disorders of children. This disease is caused by an absence or deficiency of dystrophin protein in striated muscle. The major DMD deletion “hot spots” are found between exon 6 to 8, and exons 45 to 53. Here, a “humanized” mouse model is provided that can be used to test a variety of DMD exon skipping strategies. Among these are, CRISPR/Cas9 oligonucleotides, small molecules or other therapeutic modalities that promote exon skipping or micro dystrophin mini genes or cell based therapies. Methods for restoring the reading frame of exon 44 deletion via CRISPR-mediated exon skipping in the humanized mouse model, in patient-derived iPS cells and ultimately, in patients using various delivery systems are also contemplated. The impact of CRISPR technology on DMD is that gene editing can permanently correct mutations.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: June 23, 2020
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Yi-Li Min, Rhonda Bassel-Duby, Eric Olson
  • Publication number: 20180271069
    Abstract: Duchenne muscular dystrophy (DMD), which affects 1 in 5,000 male births, is one of the most common genetic disorders of children. This disease is caused by an absence or deficiency of dystrophin protein in striated muscle. The major DMD deletion “hot spots” are found between exon 6 to 8, and exons 45 to 53. Here, a “humanized” mouse model is provided that can be used to test a variety of DMD exon skipping strategies. Among these are, CRISPR/Cas9 oligonucleotides, small molecules or other therapeutic modalities that promote exon skipping or micro dystrophin mini genes or cell based therapies. Methods for restoring the reading frame of exon 44 deletion via CRISPR-mediated exon skipping in the humanized mouse model, in patient-derived iPS cells and ultimately, in patients using various delivery systems are also contemplated. The impact of CRISPR technology on DMD is that gene editing can permanently correct mutations.
    Type: Application
    Filed: March 7, 2018
    Publication date: September 27, 2018
    Inventors: Yi-Li MIN, Rhonda BASSEL-DUBY, Eric OLSON