Patents by Inventor Yi-Ming Sheu

Yi-Ming Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10868175
    Abstract: Some embodiments of the present disclosure provide a method for fabricating a semiconductor structure. The method includes forming a recess in a substrate and forming an epitaxy region, comprising a multilayer structure with a substance having a first lattice constant larger than a second lattice constant of the substrate. Forming the epitaxy region further includes forming a first layer in proximity to an interface between the epitaxy region and the substrate with an average concentration of the substance from about 20 to about 32 percent by an in situ growth, and forming a second layer over the first layer, a bottom portion of the second layer having a concentration of the substance from about 27 percent to about 37 percent by an in situ growth operation.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shin-Jiun Kuang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 10861972
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. In some embodiments, the present disclosure relates to a finFET device and its formation. A strain-inducing layer is disposed on a semiconductor fin between a channel region and a metal gate electrode. First and second inner spacers are disposed on a top surface of the strain-inducing layer and have inner sidewalls disposed along outer sidewalls of the metal gate electrode. First and second outer spacers have innermost sidewalls disposed along outer sidewalls of the first and second inner spacers, respectively. The first and second outer spacers cover outer sidewalls of the first and second inner spacers.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Publication number: 20200365712
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Publication number: 20200365735
    Abstract: The present disclosure provides many different embodiments of an IC device. The IC device includes a gate stack disposed over a surface of a substrate and a spacer disposed along a sidewall of the gate stack. The spacer has a tapered edge that faces the surface of the substrate while tapering toward the gate stack. Therefore the tapered edge has an angle with respect to the surface of the substrate.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Shin-Jiun Kuang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 10741688
    Abstract: The present disclosure provides many different embodiments of an IC device. The IC device includes a gate stack disposed over a surface of a substrate and a spacer disposed along a sidewall of the gate stack. The spacer has a tapered edge that faces the surface of the substrate while tapering toward the gate stack. Therefore the tapered edge has an angle with respect to the surface of the substrate.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 11, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventors: Shin-Jiun Kuang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 10734500
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Publication number: 20200144395
    Abstract: A semiconductor device includes a gate structure located on a substrate; and a raised source/drain region adjacent to the gate structure. An interface is between the gate structure and the substrate. The raised source/drain region includes a stressor layer providing strain to a channel under the gate structure; and a silicide layer in the stressor layer. The silicide layer extends from a top surface of the raised source/drain region and ends below the interface by a predetermined depth. The predetermined depth allows the stressor layer to maintain the strain of the channel.
    Type: Application
    Filed: December 30, 2019
    Publication date: May 7, 2020
    Inventors: SHIN-JIUN KUANG, YI-HAN WANG, TSUNG-HSING YU, YI-MING SHEU
  • Publication number: 20200098923
    Abstract: A multi-gate semiconductor device having a fin element, a gate structure over the fin element, an epitaxial source/drain feature adjacent the fin element; a dielectric spacer interposing the gate structure and the epitaxial source/drain feature.
    Type: Application
    Filed: November 26, 2019
    Publication date: March 26, 2020
    Inventors: Huan-Sheng WEI, Hung-Li CHIANG, Chia-Wen LIU, Yi-Ming SHEU, Zhiqiang WU, Chung-Cheng WU, Ying-Keung LEUNG
  • Patent number: 10522657
    Abstract: A semiconductor device includes a gate structure located on a substrate; and a raised source/drain region adjacent to the gate structure. An interface is between the gate structure and the substrate. The raised source/drain region includes a stressor layer providing strain to a channel under the gate structure; and a silicide layer in the stressor layer. The silicide layer extends from a top surface of the raised source/drain region and ends below the interface by a predetermined depth. The predetermined depth allows the stressor layer to maintain the strain of the channel.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shin-Jiun Kuang, Yi-Han Wang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 10516047
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a dielectric layer. The semiconductor device structure also includes a gate stack structure in the dielectric layer. The semiconductor device structure further includes a semiconductor wire partially surrounded by the gate stack structure. In addition, the semiconductor device structure includes a contact electrode in the dielectric layer and electrically connected to the semiconductor wire. The contact electrode and the gate stack structure extend from the semiconductor wire in opposite directions.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 24, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kam-Tou Sio, Jiann-Tyng Tzeng, Charles Chew-Yuen Young, Yi-Ming Sheu, Chun-Fu Cheng, Yi-Han Wang
  • Publication number: 20190245089
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. In some embodiments, the present disclosure relates to a finFET device and its formation. A strain-inducing layer is disposed on a semiconductor fin between a channel region and a metal gate electrode. First and second inner spacers are disposed on a top surface of the strain-inducing layer and have inner sidewalls disposed along outer sidewalls of the metal gate electrode. First and second outer spacers have innermost sidewalls disposed along outer sidewalls of the first and second inner spacers, respectively. The first and second outer spacers cover outer sidewalls of the first and second inner spacers.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 8, 2019
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Patent number: 10276717
    Abstract: The demand for increased performance and shrinking geometry from ICs has brought the introduction of multi-gate devices including finFET devices. Inducing a higher tensile strain/stress in a region provides for enhanced electron mobility, which may improve performance. High temperature processes during device fabrication tend to relax the stress on these strain inducing layers. The present disclosure relates to a method of forming a strain inducing layer or cap layer at the RPG (replacement poly silicon gate) stage of a finFET device formation process. In some embodiments, the strain inducing layer is doped to reduce the external resistance.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhiqiang Wu, Yi-Ming Sheu, Tzer-Min Shen, Chun-Fu Cheng, Hong-Shen Chen
  • Publication number: 20190051734
    Abstract: Various transistors, such as horizontal gate-all-around transistors, and methods of fabricating such are disclosed herein. An exemplary transistor includes a first nanowire and a second nanowire that include a first semiconductor material, a gate that wraps a channel region of the first nanowire and the second nanowire, and source/drain feature that wraps source/drain regions of the first nanowire and the second nanowire. The source/drain feature includes a second semiconductor material that is configured differently than the first semiconductor material. In some implementations, the transistor further includes a fin-like semiconductor layer disposed over a substrate. The first nanowire and the second nanowire are disposed over the fin-like semiconductor layer, such that the first nanowire, the second nanowire, and the fin-like semiconductor layer extend substantially parallel to one another along the same length-wise direction.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 14, 2019
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Publication number: 20190019881
    Abstract: A semiconductor device includes a gate structure located on a substrate; and a raised source/drain region adjacent to the gate structure. An interface is between the gate structure and the substrate. The raised source/drain region includes a stressor layer providing strain to a channel under the gate structure; and a silicide layer in the stressor layer. The silicide layer extends from a top surface of the raised source/drain region and ends below the interface by a predetermined depth. The predetermined depth allows the stressor layer to maintain the strain of the channel.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 17, 2019
    Inventors: SHIN-JIUN KUANG, YI-HAN WANG, TSUNG-HSING YU, YI-MING SHEU
  • Patent number: 10109721
    Abstract: Various semiconductor devices, such as horizontal gate-all-around devices, and methods of fabricating such are disclosed herein. An exemplary semiconductor device includes a fin structure having a channel region disposed between a first source/drain region and a second source/drain region. The fin structure includes a first nanowire and a second nanowire disposed in the channel region, the first source/drain region, and the second source/drain region. The fin structure further includes an epitaxial layer that wraps the first nanowire and the second nanowire in the first source/drain region and the second source/drain region. A gate is disposed over the channel region of the fin structure, such that the gate wraps the first nanowire and the second nanowire in the channel region. In some implementations, the first nanowire, the second nanowire, and the epitaxial layer combine to have a vertical bar-like shape in the first source/drain region and the second source/drain region.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: October 23, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Hsiung Lin, Chung-Cheng Wu, Carlos H. Diaz, Chih-Hao Wang, Wen-Hsing Hsieh, Yi-Ming Sheu
  • Publication number: 20180301560
    Abstract: A multi-gate semiconductor device having a fin element, a gate structure over the fin element, an epitaxial source/drain feature adjacent the fin element; a dielectric spacer interposing the gate structure and the epitaxial source/drain feature.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 18, 2018
    Inventors: Huan-Sheng WEI, Hung-Li CHIANG, Chia-Wen LIU, Yi-Ming SHEU, Zhiqiang WU, Chung-Cheng WU, Ying-Keung LEUNG
  • Patent number: 10084063
    Abstract: A semiconductor device includes a gate structure located on a substrate; and a raised source/drain region adjacent to the gate structure. An interface is between the gate structure and the substrate. The raised source/drain region includes a stressor layer providing strain to a channel under the gate structure; and a silicide layer in the stressor layer. The silicide layer extends from a top surface of the raised source/drain region and ends below the interface by a predetermined depth. The predetermined depth allows the stressor layer to maintain the strain of the channel.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 25, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Shin-Jiun Kuang, Yi-Han Wang, Tsung-Hsing Yu, Yi-Ming Sheu
  • Patent number: 10008603
    Abstract: A method of fabrication of a multi-gate semiconductor device that includes providing a fin having a plurality of a first type of epitaxial layers and a plurality of a second type of epitaxial layers. A first portion of a first layer of the second type of epitaxial layers is removed in a channel region of the fin to form an opening between a first layer of the first type of epitaxial layer and a second layer of the first type of epitaxial layer. A portion of a gate structure is then formed having a gate dielectric and a gate electrode in the opening. A dielectric material is formed abutting the portion of the gate structure.
    Type: Grant
    Filed: November 18, 2016
    Date of Patent: June 26, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huan-Sheng Wei, Hung-Li Chiang, Chia-Wen Liu, Yi-Ming Sheu, Zhiqiang Wu, Chung-Cheng Wu, Ying-Keung Leung
  • Publication number: 20180166572
    Abstract: Some embodiments of the present disclosure provide a method for fabricating a semiconductor structure. The method includes forming a recess in a substrate and forming an epitaxy region, comprising a multilayer structure with a substance having a first lattice constant larger than a second lattice constant of the substrate. Forming the epitaxy region further includes forming a first layer in proximity to an interface between the epitaxy region and the substrate with an average concentration of the substance from about 20 to about 32 percent by an in situ growth, and forming a second layer over the first layer, a bottom portion of the second layer having a concentration of the substance from about 27 percent to about 37 percent by an in situ growth operation.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 14, 2018
    Inventors: SHIN-JIUN KUANG, TSUNG-HSING YU, YI-MING SHEU
  • Publication number: 20180151729
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a dielectric layer. The semiconductor device structure also includes a gate stack structure in the dielectric layer. The semiconductor device structure further includes a semiconductor wire partially surrounded by the gate stack structure. In addition, the semiconductor device structure includes a contact electrode in the dielectric layer and electrically connected to the semiconductor wire. The contact electrode and the gate stack structure extend from the semiconductor wire in opposite directions.
    Type: Application
    Filed: March 28, 2017
    Publication date: May 31, 2018
    Inventors: Kam-Tou SIO, Jiann-Tyng TZENG, Charles Chew-Yuen YOUNG, Yi-Ming SHEU, Chun-Fu CHENG, Yi-Han WANG