Patents by Inventor Yi-Qiao Song

Yi-Qiao Song has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140184220
    Abstract: A method and system for determining a property of a substance using nuclear magnetic resonance (NMR) is described herein. The method includes applying a NMR pulse sequence to the substance. The NMR pulse sequence includes a first set of pulses and a second set of pulses. The first set of pulses and the second set of pulses encode for overlapping diffusion times. By overlapping diffusion times, the NMR pulse sequence can be used to measure a diffusion coefficient for a first diffusion time, a diffusion coefficient for a second diffusion time, and a correlation between the two overlapping diffusion times. This information, in turn, can be used to differentiate between intrinsic bulk diffusivity of the substance and the reduced diffusivity of the substance caused by restricted diffusion.
    Type: Application
    Filed: August 5, 2013
    Publication date: July 3, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: JEFFREY L. PAULSEN, YI-QIAO SONG
  • Publication number: 20140132259
    Abstract: A method for determining particle size distribution of a subsurface rock formation having pore spaced filled with at least two different fluids using measurements of at least one nuclear magnetic resonance property thereof made from within a wellbore penetrating the rock formation includes determining a distribution of nuclear magnetic relaxation times from the measurements of the at least one nuclear magnetic resonance property. A fractional volume of the pore spaces occupied by each of the at least two fluids is determined. A surface relaxivity of the rock formation for portions of the rock pore spaces occupied by each of the at least two fluids is determined from a measurement of a formation parameter. The relaxation time distribution and the surface relaxivities are used to determine the particle size distribution.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: Schlumberger Technology Corporation
    Inventor: Yi-Qiao Song
  • Patent number: 8653815
    Abstract: A method for determining particle size distribution of a subsurface rock formation using measurements of at least one nuclear magnetic resonance property made from within a wellbore penetrating the rock formation includes determining a distribution of nuclear magnetic relaxation times from the measurements of the at least one nuclear magnetic resonance property. A surface relaxivity of the formation is determined from measurements of a formation parameter. The relaxation time distribution and surface relaxivity are used to determine the particle size distribution.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: February 18, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Rajesh A. Chanpura, Yi-Qiao Song, Mehmet Parlar, Lukasz Zielinski
  • Publication number: 20130325408
    Abstract: Processing nuclear magnetic resonance data to obtain information regarding material properties is described. This processing can include, for example, compression techniques that can be implemented to lower the required operating memory. In some embodiments, a compression technique can be chosen based on the available operating memory of the computer system. By doing so, an efficient compression algorithm can be selected. In some embodiments, a Lanczos bidiagonalization algorithm, for example, an IRLBA algorithm, can be used for data compression.
    Type: Application
    Filed: January 27, 2012
    Publication date: December 5, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventor: Yi-Qiao Song
  • Publication number: 20130234704
    Abstract: A method and system for determining a nuclear magnetic resonance (NMR) property are described herein. The method includes applying a static magnetic field to a substance and applying an NMR pulse sequence to the substance. The NMR pulse sequence comprises a first pulse sequence segment applied at a first frequency to a shell and a second pulse sequence segment applied at a second frequency. The first pulse sequence segment generates a resonant signal in the shell and the second pulse sequence segment generates a characteristic within the resonant signal. The resonant signal is detected and an NMR property is determined using the characteristic within the detected resonant signal.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 12, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: MARTIN D. Hürlimann, YI-QIAO SONG, SOUMYAJIT MANDAL
  • Publication number: 20130234706
    Abstract: A broadband magnetic resonance (MR) receiver is described herein. The MR receiver can be used to process nuclear magnetic resonance (NMR) signals. The MR receiver includes a transformer that amplifies the MR signals and a preamplifier that receives the MR signals from the transformer. The preamplifier includes a common-drain amplifier stage and a common-source amplifier stage.
    Type: Application
    Filed: February 22, 2013
    Publication date: September 12, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: SOUMYAJIT MANDAL, YI-QIAO SONG, SHIN UTSUZAWA, MARC THOMPSON
  • Publication number: 20130187648
    Abstract: Estimating and displaying information about the size of molecules within a substance from nuclear magnetic resonance (NMR) maps and/or logs. Methods include utilizing a relationship between the molecular size (e.g., mean chain length), and either a moment of diffusion or a relaxation distribution, to create a scale on a two-dimensional map. In one case, applying the relationship between the molecular size, and either a moment of diffusion or a relaxation distribution, to one-dimensional diffusion or relaxation distributions for the purpose of estimating the mean chain length of molecules within the substance. In another case, a method includes determining mean chain lengths of molecules within a substance and providing a one-dimensional NMR log showing the mean chain lengths at a plurality of depths. In some cases, the NMR log includes actuatable regions for examining two-dimensional NMR maps or chain length distributions of the substance corresponding with distinct depths of the substance.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Inventors: DENISE E. FREED, LUKASZ J. ZIELINSKI, YI-QIAO SONG, MARCUS DONALDSON
  • Publication number: 20130162247
    Abstract: Illustrative embodiments are directed to applying a nuclear magnetic resonance sequence to a substance within an inhomogeneous static magnetic field. Various embodiments include applying a series of refocusing pulses to the substance, each refocusing pulse in the series of refocusing pulses having at least two segments, and a total pulse duration less than or equal to approximately 1.414 times T180. Various embodiments can further include applying an excitation pulse to the substance in the inhomogeneous static magnetic field, where the excitation pulse generates an initial magnetization that is aligned with a refocusing axis produced by a refocusing cycle that is performed after the excitation pulse.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventors: MARTIN D. HÜRLIMANN, SOUMYAJIT MANDAL, VAN MAI DO, YI-QIAO SONG
  • Patent number: 8473046
    Abstract: A method of in vitro or in vivo nuclear magnetic resonance and/or magnetic resonance imaging, to determine bone properties by measuring the effects of molecular diffusion inside the bone specimen to derive parameters that are related to the structure of the trabecular bones. The method is a non-invasive probe that provides topological information on trabecular bone without requiring a full high-resolution image of its structure, and is compatible with clinical use.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: June 25, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Yi-Qiao Song, Eric E Sigmund, HyungJoon Cho
  • Publication number: 20130154635
    Abstract: The present disclosure relates to an integrated nuclear magnetic resonance (NMR) transceiver array, the array including a plurality of integrated NMR transceiver circuits disposed on a single chip. At least one of the plurality of integrated NMR transceiver circuits includes a transmitter that receives and outputs a radio frequency (RF) pulse train and a receiver that receives an NMR signal.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Inventors: SOUMYAJIT MANDAL, YI-QIAO SONG
  • Publication number: 20130106413
    Abstract: A method and system for determining a geometry of a borehole includes forming an nuclear magnetic resonance (NMR) caliper with a plurality of coils and coupling the NMR caliper to a borehole assembly. The NMR caliper may be calibrated for porosity and the T2 of the drilling mud, prior to drilling, at the surface. After drilling commences, scans of the borehole may be conducted with each coil of the NMR caliper. Each scan may include propagating RF energy across a range of frequencies with each coil in order to excite a NMR signal at varying depths. Borehole wall distances from the NMR caliper may be determined by reviewing a plurality of T2 distributions from CPMG measurements derived from the scans. In some embodiments, borehole wall distances from the NMR caliper may be determined by reviewing porosity values derived from the scans.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Inventors: Tim Hopper, Nicholas J. Heaton, David T. Oliver, Luis E. Depavia, Yi-Qiao Song, Martin D. Hurlimann
  • Publication number: 20130063142
    Abstract: An NMR apparatus disposed in a wellbore and having an array of two or more NMR sensors located at substantially the same axial position on the NMR apparatus and having different directional sensitivities is used to acquire an NMR signal from at least two of the two or more NMR sensors. The NMR signals are combined to obtain borehole information. The borehole information may include an azimuthal image of the formation surrounding the borehole. The azimuthal image may be a formation porosity image, a formation bound fluid image, a T2 distribution image, a T2 log mean image, a formation permeability image, or a formation fluid viscosity image. If two or more pre-amplifiers and receiver circuitry are also provided, the NMR signals may be combined prior to passing through the pre-amplifiers and receiver circuitry to improve the signal to noise ratio of the total signal from the desired sample space.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Inventors: Timothy Hopper, David G. Cory, Yi-Qiao Song, Martin D. Hurlimann
  • Patent number: 8362767
    Abstract: A method for utilizing received formation data to determine one or more fluid instance such as reservoir wettability while in one of a subterranean environment or a surface environment. The method comprising: (a) obtaining at least one set of formation data wherein the set of formation data includes magnetic resonance data from two or more samples within an approximate common characteristic region in the reservoir; (b) computing from the at least one set of received formation data a first fluid instance of the one or more fluid instance using at least two mathematical variables from the group consisting of one of oil saturation, water saturation, T1, T2, diffusion coefficient, tortuosity from long time diffusion coefficient or some combination thereof; and (c) interpreting the computed first fluid instance as at least one wettability property between the fluids in a formation located in the subterranean environment and the formation.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: January 29, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin D. Hürlimann, Yi-Qiao Song
  • Publication number: 20120273193
    Abstract: Systems and methods for magic angle spinning nuclear magnetic resonance analysis of samples from unconventional reservoirs are described. Fast and inexpensive methods are described that can provide reliable information on TOC content, type, and maturity (via the relative abundances of different hydrocarbons, for example) without the need for more extensive sample preparation or destruction. If care is taken during sample recovery and storage, NMR can also yield an estimate of gas-in-place, including detailed typing (e.g. methane vs. ethane). The described MAS NMR analysis is used to determine various properties of unconventional reservoirs, including gas and oil shales, which are useful in evaluating their worth and producibility.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Schlumberger Technology Corporation
    Inventors: Pabitra N. Sen, Gabriela Leu, Nicholas Drenzek, Thomas J. Neville, Yi-Qiao Song, Ravinath Kausik Kadayam Viswanathan
  • Patent number: 8278922
    Abstract: A method for utilizing received formation data to determine one or more fluid instance such as reservoir wettability while in one of a subterranean environment or a surface environment. The method comprising: (a) obtaining at least one set of formation data wherein the set of formation data includes magnetic resonance data from two or more samples within an approximate common characteristic region in the reservoir; (b) computing from the at least one set of received formation data a first fluid instance of the one or more fluid instance using at least two mathematical variables from the group consisting of one of oil saturation, water saturation, T1, T2, diffusion coefficient, tortuosity from long time diffusion coefficient or some combination thereof; and (c) interpreting the computed first fluid instance as at least one wettability property between the fluids in a formation located in the subterranean environment and the formation.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin D. Hurlimann, Yi-Qiao Song
  • Publication number: 20120229135
    Abstract: A method for utilizing received formation data to determine one or more fluid instance such as reservoir wettability while in one of a subterranean environment or a surface environment. The method comprising: (a) obtaining at least one set of formation data wherein the set of formation data includes magnetic resonance data from two or more samples within an approximate common characteristic region in the reservoir; (b) computing from the at least one set of received formation data a first fluid instance of the one or more fluid instance using at least two mathematical variables from the group consisting of one of oil saturation, water saturation, T1, T2, diffusion coefficient, tortuosity from long time diffusion coefficient or some combination thereof; and (c) interpreting the computed first fluid instance as at least one wettability property between the fluids in a formation located in the subterranean environment and the formation.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Martin D. Hurlimann, Yi-Qiao Song
  • Publication number: 20120169334
    Abstract: Methods and related apparatuses of a downhole micro nuclear magnetic resonance (NMR) device having a resonant tuning (LC) circuit for use in a formation for collecting NMR signals from a fluid in the formation while under downhole pressures and temperatures. The downhole micro NMR device includes: a micro tube for the flowing fluid to flow therethrough; at least one magnet disposed about the micro tube; and at least one micro RF coil structured and arranged approximate to the micro tube and tuned to a Larmor frequency corresponding to a applied magnetic field from the at least one magnet.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 5, 2012
    Applicant: Schlumberger Technology Corporation
    Inventors: Timothy Hopper, Martin Hurlimann, Yi-Qiao Song
  • Publication number: 20120126809
    Abstract: Methods and systems are provided that enable logging while drilling NMR measurements to be made with a tool having magnets with positions adjustable or movable relative to each other. Such movement can affect the depth of investigation of the NMR tool. A variety of moving assemblies can be used to effectuate the movement, which can be performed either at the surface or downhole. The tool also can include a magnetically permeable member to control the magnetic field gradient.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 24, 2012
    Inventors: Tim Hopper, Luis E. Depavia, Yi-Qiao Song, David T. Oliver
  • Publication number: 20120001629
    Abstract: Methods and systems are provided for tools having non-resonant circuits for analyzing a formation and/or a sample. For example, nuclear magnetic resonance and resistivity tools can make use of a non-resonant excitation coil and/or a detection coil. These coils can achieve desired frequencies by the use of switches, thereby removing the requirement of tuning circuits that are typical in conventional tools.
    Type: Application
    Filed: June 1, 2011
    Publication date: January 5, 2012
    Inventors: TIM HOPPER, David G. Cory, Julius Kusuma, Yi-Qiao Song, Martin D. Hurlimann, Martin E. Poitzsch
  • Publication number: 20110198078
    Abstract: Subsurface formation evaluation comprising, for example, sealing a portion of a wall of a wellbore penetrating the formation, forming a hole through the sealed portion of the wellbore wall, injecting an injection fluid into the formation through the hole, and determining a saturation of the injection fluid in the formation by measuring a property of the formation proximate the hole while maintaining the sealed portion of the wellbore wall.
    Type: Application
    Filed: July 9, 2009
    Publication date: August 18, 2011
    Inventors: Edward Harrigan, Yves BarrioL, Andrei I. Davydychev, Andrew J. Carnegie, Dean M. Homan, Srinand Karuppoor, Yi-Qiao Song, Tim Hopper, Henry N. Bachman, William B. Vandermeer, Anthony L. Collins, Mark A. Fredette