Patents by Inventor Yi-Tao Yu
Yi-Tao Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240229030Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.Type: ApplicationFiled: September 28, 2023Publication date: July 11, 2024Applicants: University of Rochester, ProQR Therapeutics II B.V.Inventors: Bart KLEIN, Janne Juha TURUNEN, Lenka VAN SINT FIET, Pedro Duarte Morais Fernandes Arantes DA SILVA, Julien Auguste Germain BOUDET, Yi-Tao YU, Hironori ADACHI, Meemanage De ZOYSA
-
Publication number: 20240132890Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.Type: ApplicationFiled: September 27, 2023Publication date: April 25, 2024Applicants: University of Rochester, ProQR Therapeutics II B.V.Inventors: Bart KLEIN, Janne Juha TURUNEN, Lenka VAN SINT FIET, Pedro Duarte Morais Fernandes Arantes DA SILVA, Julien Auguste Germain BOUDET, Yi-Tao YU, Hironori ADACHI, Meemanage De ZOYSA
-
Patent number: 11866702Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.Type: GrantFiled: March 27, 2019Date of Patent: January 9, 2024Assignees: University of Rochester, ProQR Therapeutics II B.V.Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
-
Publication number: 20210010002Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.Type: ApplicationFiled: March 27, 2019Publication date: January 14, 2021Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
-
Patent number: 9273294Abstract: Processes and C/D box small nucleolar RNAs (snoRNAs) for altering telomerase activity and altering telomerase length are described. The processes of the invention involve the use of C/D box snoRNAs for targeted 2?-O-methylation modification of nucleotides in a pseudoknot region of the telomerase RNA. Depending on their position, the 2?-O-methylation modifications can cause an increase in telomerase activity and subsequent telomere lengthening or a decrease in telomerase activity and subsequent telomere shortening.Type: GrantFiled: July 15, 2011Date of Patent: March 1, 2016Assignee: University of RochesterInventors: Yi-Tao Yu, Chao Huang
-
Patent number: 9238813Abstract: Methods for affecting mRNA expression or translation through the modification of pre-mRNA or mRNA transcripts are described. In one embodiment of the methods of the present invention, the branch point adenosine of a pre-mRNA transcript is 2?-0-methylated to block splicing and subsequent expression of the protein encoded by the transcript. In another embodiment, a uridine residue in a nonsense stop codon may be modified to pseudouridine, causing the translation machinery to read through the nonsense stop codon and translate a full length protein.Type: GrantFiled: October 17, 2013Date of Patent: January 19, 2016Assignee: University of RochesterInventors: Yi-Tao Yu, Xinliang Zhao
-
Publication number: 20140186300Abstract: Methods for affecting mRNA expression or translation through the modification of pre-mRNA or mRNA transcripts are described. In one embodiment of the methods of the present invention, the branch point adenosine of a pre-mRNA transcript is 2?-0-methylated to block splicing and subsequent expression of the protein encoded by the transcript. In another embodiment, a uridine residue in a nonsense stop codon may be modified to pseudouridine, causing the translation machinery to read through the nonsense stop codon and translate a full length protein.Type: ApplicationFiled: October 17, 2013Publication date: July 3, 2014Applicant: University of RochesterInventors: Yi-Tao YU, Xinliang Zhao
-
Patent number: 8603457Abstract: Methods for affecting mRNA expression or translation through the modification of pre-mRNA or mRNA transcripts are described. In one embodiment of the methods of the present invention, the branch point adenosine of a pre-mRNA transcript is 2?-O-methylated to block splicing and subsequent expression of the protein encoded by the transcript. In another embodiment, a uridine residue in a nonsense stop codon may be modified to pseudouridine, causing the translation machinery to read through the nonsense stop codon and translate a full length protein.Type: GrantFiled: December 1, 2006Date of Patent: December 10, 2013Assignee: University of RochesterInventors: Yi-Tao Yu, Xinliang Zhao
-
Publication number: 20130196409Abstract: Processes and C/D box small nucleolar RNAs (snoRNAs) for altering telomerase activity and altering telomerase length are described. The processes of the invention involve the use of C/D box snoRNAs for targeted 2?-O-methylation modification of nucleotides in a pseudoknot region of the telomerase RNA. Depending on their position, the 2?-O-methylation modifications can cause an increase in telomerase activity and subsequent telomere lengthening or a decrease in telomerase activity and subsequent telomere shortening.Type: ApplicationFiled: July 15, 2011Publication date: August 1, 2013Applicant: UNIVERSITY OF ROCHESTERInventors: Yi-Tao Yu, Chao Huang
-
Publication number: 20070141030Abstract: Methods for affecting mRNA expression or translation through the modification of pre-mRNA or mRNA transcripts are described. In one embodiment of the methods of the present invention, the branch point adenosine of a pre-mRNA transcript is 2?-O-methylated to block splicing and subsequent expression of the protein encoded by the transcript. In another embodiment, a uridine residue in a nonsense stop codon may be modified to pseudouridine, causing the translation machinery to read through the nonsense stop codon and translate a full length protein.Type: ApplicationFiled: December 1, 2006Publication date: June 21, 2007Inventors: Yi-Tao Yu, Xinliang Zhao