Patents by Inventor Yian-Liang Kuo

Yian-Liang Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959958
    Abstract: A method includes providing a detector disposed above a semiconductor structure; identifying a portion of the semiconductor structure at a temperature substantially greater than a predetermined threshold by the detector; rotating the stage; and deriving a position of the portion of the semiconductor structure based upon the rotation of the stage.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi Min Liu, Chien-Yi Chen, Yian-Liang Kuo
  • Patent number: 11935760
    Abstract: A package structure includes a first thermal dissipation structure, a first semiconductor die, a second semiconductor die. The first thermal dissipation structure includes a semiconductor substrate, conductive vias embedded in the semiconductor substrate, first capacitors electrically connected to the conductive vias, and a thermal transmission structure disposed over the semiconductor substrate and the conductive vias. The first semiconductor die is disposed on the first thermal dissipation structure. The second semiconductor die is disposed on the first semiconductor die opposite to the first thermal dissipation structure.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yian-Liang Kuo, Kuo-Chung Yee
  • Publication number: 20230343719
    Abstract: Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
    Type: Application
    Filed: June 23, 2023
    Publication date: October 26, 2023
    Inventors: Ru-Ying Huang, Yung-Ching Chen, Yueh-Chiou Lin, Yian-Liang Kuo
  • Patent number: 11728279
    Abstract: Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: August 15, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Ying Huang, Yung-Ching Chen, Yueh-Chiou Lin, Yian-Liang Kuo
  • Publication number: 20230068578
    Abstract: A package structure includes a first thermal dissipation structure, a first semiconductor die, a second semiconductor die. The first thermal dissipation structure includes a semiconductor substrate, conductive vias embedded in the semiconductor substrate, first capacitors electrically connected to the conductive vias, and a thermal transmission structure disposed over the semiconductor substrate and the conductive vias. The first semiconductor die is disposed on the first thermal dissipation structure. The second semiconductor die is disposed on the first semiconductor die opposite to the first thermal dissipation structure.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yian-Liang Kuo, Kuo-Chung Yee
  • Publication number: 20220139838
    Abstract: Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Ru-Ying Huang, Yung-Ching Chen, Yueh-Chiou Lin, Yian-Liang Kuo
  • Patent number: 11227836
    Abstract: Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: January 18, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Ying Huang, Yung-Ching Chen, Yueh-Chiou Lin, Yian-Liang Kuo
  • Publication number: 20210172995
    Abstract: A method includes providing a detector disposed above a semiconductor structure; identifying a portion of the semiconductor structure at a temperature substantially greater than a predetermined threshold by the detector; rotating the stage; and deriving a position of the portion of the semiconductor structure based upon the rotation of the stage.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 10, 2021
    Inventors: YI MIN LIU, CHIEN-YI CHEN, YIAN-LIANG KUO
  • Publication number: 20210098435
    Abstract: Interconnect structures, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, an interconnect structure includes a polymer material and a post passivation interconnect (PPI) pad disposed over the polymer material. A PPI line is disposed within an opening in the polymer material, the PPI line being coupled to the PPI pad.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Yi-Sheng Wang
  • Patent number: 10955459
    Abstract: A method includes loading the semiconductor structure on a stage; providing a detector disposed above the semiconductor structure and the stage; applying a voltage to the semiconductor structure; identifying a portion of the semiconductor structure at a temperature substantially greater than a predetermined threshold by the detector; rotating the stage and recording a rotation of the stage after identifying the portion of the semiconductor structure; and deriving a position of the portion of the semiconductor structure based upon the rotation of the stage.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yi Min Liu, Chien-Yi Chen, Yian-Liang Kuo
  • Patent number: 10867975
    Abstract: Interconnect structures, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, an interconnect structure includes a polymer material and a post passivation interconnect (PPI) pad disposed over the polymer material. A PPI line is disposed within an opening in the polymer material, the PPI line being coupled to the PPI pad.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Yi-Sheng Wang
  • Patent number: 10770366
    Abstract: A method includes forming an electrical connector over a substrate of a wafer, and molding a polymer layer, with at least a portion of the electrical connector molded in the polymer layer. A first sawing step is performed to form a trench in the polymer layer. After the first sawing step, a second sawing step is performed to saw the wafer into a plurality of dies.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: September 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Hsien-Wei Chen, Tsung-Fu Tsai, Wen-Hsiung Lu, Yian-Liang Kuo
  • Publication number: 20200126920
    Abstract: Various embodiments of the present application are directed towards a pad with high strength and bondability. In some embodiments, an integrated chip comprises a substrate, an interconnect structure, a pad, and a conductive structure. The interconnect structure adjoins the substrate and comprises wires and vias. The wires and the vias are stacked between the pad and the substrate. The conductive structure (e.g., a wire bond) extends through the substrate to the pad. By arranging the wires and the vias between the pad and the substrate, the pad may be inset into a passivation layer of the interconnect structure and the passivation layer may absorb stress on the pad. Further, the pad may contact the wires and the vias at a top wire level. A thickness of the top wire level may exceed a thickness of other wire levels, whereby the top wire level may be more tolerant to stress.
    Type: Application
    Filed: January 28, 2019
    Publication date: April 23, 2020
    Inventors: Ru-Ying Huang, Yung-Ching Chen, Yueh-Chiou Lin, Yian-Liang Kuo
  • Publication number: 20200091027
    Abstract: A method includes forming an electrical connector over a substrate of a wafer, and molding a polymer layer, with at least a portion of the electrical connector molded in the polymer layer. A first sawing step is performed to form a trench in the polymer layer. After the first sawing step, a second sawing step is performed to saw the wafer into a plurality of dies.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Chia-Wei Tu, Hsien-Wei Chen, Tsung-Fu Tsai, Wen-Hsiung Lu, Yian-Liang Kuo
  • Publication number: 20200003825
    Abstract: A method includes loading the semiconductor structure on a stage; providing a detector disposed above the semiconductor structure and the stage; applying a voltage to the semiconductor structure; identifying a portion of the semiconductor structure at a temperature substantially greater than a predetermined threshold by the detector; rotating the stage and recording a rotation of the stage after identifying the portion of the semiconductor structure; and deriving a position of the portion of the semiconductor structure based upon the rotation of the stage.
    Type: Application
    Filed: January 31, 2019
    Publication date: January 2, 2020
    Inventors: Yi Min LIU, Chien-Yi CHEN, Yian-Liang KUO
  • Patent number: 10510635
    Abstract: A method includes forming an electrical connector over a substrate of a wafer, and molding a polymer layer, with at least a portion of the electrical connector molded in the polymer layer. A first sawing step is performed to form a trench in the polymer layer. After the first sawing step, a second sawing step is performed to saw the wafer into a plurality of dies.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Hsien-Wei Chen, Tsung-Fu Tsai, Wen-Hsiung Lu, Yian-Liang Kuo
  • Patent number: 10453818
    Abstract: A chip includes a first group of dummy bumps disposed at a top surface of the chip in a first corner of the chip, a second group of dummy bumps disposed at the top surface of the chip in a second corner of the chip, and active bump connectors disposed at the top surface of the chip. The chip also includes an outer seal ring disposed around a periphery of the chip, a first seal ring arrangement disposed around the first group of dummy bumps, and a second seal ring arrangement disposed around the second group of dummy bumps. The first seal ring arrangement and second seal ring arrangement are disposed in dielectric layers underlying the first and second groups of dummy bumps.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Chia-Wei Tu, Yian-Liang Kuo, Ru-Ying Huang
  • Publication number: 20190273071
    Abstract: Interconnect structures, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, an interconnect structure includes a polymer material and a post passivation interconnect (PPI) pad disposed over the polymer material. A PPI line is disposed within an opening in the polymer material, the PPI line being coupled to the PPI pad.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 5, 2019
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Yi-Sheng Wang
  • Patent number: 10340258
    Abstract: Interconnect structures, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, an interconnect structure includes a polymer material and a post passivation interconnect (PPI) pad disposed over the polymer material. A PPI line is disposed within an opening in the polymer material, the PPI line being coupled to the PPI pad.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: July 2, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Yi-Sheng Wang
  • Patent number: 10269750
    Abstract: Methods and apparatuses for wafer level packaging (WLP) semiconductor devices are disclosed. A redistribution layer (RDL) is formed on a first passivation layer in contact with a conductive pad over a surface of a die. The RDL layer is on top of a first region of the first passivation layer. A second passivation layer is formed on the RDL layer with an opening to expose the RDL layer, and over the first passivation layer. An under bump metallization (UBM) layer is formed over the second passivation layer in contact with the exposed RDL layer. A second region of the first passivation layer disjoint from the first region is determined by projecting an outer periphery of a solder ball or other connector onto the surface.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Tsung-Fu Tsai, Ru-Ying Huang, Ming-Song Sheu, Hsien-Wei Chen