Patents by Inventor Yibang Wang

Yibang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11733298
    Abstract: The present application provides two-port on-wafer calibration piece circuit models and a method for determining parameters. The method includes: measuring a single-port on-wafer calibration piece circuit model corresponding to a first frequency band to obtain a first S parameter; calculating, according to the first S parameter, an intrinsic capacitance value of a two-port on-wafer calibration piece circuit model corresponding to the single-port on-wafer calibration piece circuit model; measuring the two-port on-wafer calibration piece circuit model corresponding to the terahertz frequency band to obtain a second S parameter; and calculating a parasitic capacitance value and a parasitic resistance value of the two-port on-wafer calibration piece circuit model according to the second S parameter and the intrinsic capacitance value.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: August 22, 2023
    Assignee: The 13th Research Institute of China Electronics Technology Group Corporation
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Ye Huo, Peng Luan, Jing Sun, Yanli Li
  • Publication number: 20230051442
    Abstract: A method for calibrating crosstalk errors in a system for measuring on-wafer S parameters and an electronic device are provided. The method includes two parts. The first part is the pre-calibration part, which obtain eight error terms of an on-wafer S parameter measurement system by using a thru calibration standard, two defined load calibration standards, two pairs of undefined reflect calibration standards, and the reciprocity properties of a passive reciprocal element. The first part performs pre-calibration on an uncalibrated system according to the eight error terms. The second part uses the pre-calibrated system to obtain the crosstalk errors of the measurement system, and performs a further calibration on the pre-calibrated system according to the crosstalk errors.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 16, 2023
    Inventors: Aihua Wu, Xingchang Fu, Yuan Fang, Yibang Wang, Ye Huo, Faguo Liang, Chen Liu, Peng Luan, Senfeng Xu, Xiaohua Chen, Xiaoyun Zhang
  • Patent number: 11385175
    Abstract: A calibration method includes: acquiring eight error models obtained after a preliminary calibration of a Terahertz frequency band system; based on the eight error models, determining a first mathematical model according to a first S parameter related to a first calibration piece, the first mathematical model comprising parallel crosstalk terms between probes, and determining a second mathematical model according to a second S parameter related to a second calibration piece, the second mathematical model comprising series crosstalk terms between the probes; determining a third mathematical model according to a third S parameter related to a measured piece; and solving and obtaining a Z parameter of the measured piece based on the first mathematical model, the second mathematical model and the third mathematical model, and acquiring an S parameter of the measured piece according to the Z parameter of the measured piece.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 12, 2022
    Assignee: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Peng Luan, Ye Huo, Jing Sun, Yanli Li
  • Patent number: 11340286
    Abstract: The present application is applicable to the technical field of terahertz on-wafer measurement, and provides a new on-wafer S-parameter calibration method and device. The method includes: performing two-port calibration on a waveguide end face when a probe is not connected to a test system; performing one-port calibration on each of two probe end faces when the probe is connected to the test system; and fabricating a crosstalk calibration standard equal to a device under test in length on a substrate of the device under test, and correct a crosstalk error of the test system according to the crosstalk calibration standard. The present application can realize accurate characterization and correction of crosstalk error in a high-frequency on-wafer S-parameter calibration process, and improve the accuracy of error correction in high-frequency on-wafer S-parameter measurement.
    Type: Grant
    Filed: December 29, 2018
    Date of Patent: May 24, 2022
    Assignee: THE 13TH RESEARCH INSTITUTE OF CHINA ELECTRONICS
    Inventors: Aihua Wu, Chong Li, Chen Liu, Yibang Wang, Xingchang Fu, Faguo Liang, Xiuwei Tian, Yanan Liu, Jian Cao
  • Publication number: 20220107361
    Abstract: The present application provides two-port on-wafer calibration piece circuit models and a method for determining parameters. The method includes: measuring a single-port on-wafer calibration piece circuit model corresponding to a first frequency band to obtain a first S parameter; calculating, according to the first S parameter, an intrinsic capacitance value of a two-port on-wafer calibration piece circuit model corresponding to the single-port on-wafer calibration piece circuit model; measuring the two-port on-wafer calibration piece circuit model corresponding to the terahertz frequency band to obtain a second S parameter; and calculating a parasitic capacitance value and a parasitic resistance value of the two-port on-wafer calibration piece circuit model according to the second S parameter and the intrinsic capacitance value.
    Type: Application
    Filed: December 14, 2021
    Publication date: April 7, 2022
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Ye Huo, Peng Luan, Jing Sun, Yanli Li
  • Publication number: 20220099736
    Abstract: A method includes: constructing an on-wafer calibration piece model set that includes one or more on-wafer calibration piece models, where each of the one or more on-wafer calibration piece models has a corresponding on-wafer calibration piece; selecting an on-wafer calibration piece model from the on-wafer calibration piece model set; measuring the on-wafer calibration piece utilizing an on-wafer S parameter measurement system that is calibrated using a multi-thread TRL calibration method in a Terahertz frequency band, to obtain an S parameter of the on-wafer calibration piece; and calculating a plurality of different parameters that represent crosstalk of calibration pieces in the on-wafer calibration piece model, according to an admittance calculated according to the S parameter and an admittance formula corresponding to the on-wafer calibration piece model.
    Type: Application
    Filed: December 14, 2021
    Publication date: March 31, 2022
    Inventors: Aihua Wu, Yibang Wang, Faguo Liang, Chen Liu, Ye Huo, Peng Luan, Jing Sun, Yanli Li
  • Patent number: 11275103
    Abstract: The disclosure provides a calibration method, a system and a device of an on-wafer S parameter of a vector network analyzer. The method comprises the steps of: acquiring a first parameter of a first crosstalk calibration piece measured by the vector network analyzer; obtaining a main crosstalk error term based on the first parameter of the first crosstalk calibration piece and a calibration parameter of the first crosstalk calibration piece; acquiring a second parameter of a second crosstalk calibration piece measured by the vector network analyzer based on the main crosstalk error term; and obtaining a secondary crosstalk error term based on the second parameter of the second crosstalk calibration piece and a calibration parameter of the second crosstalk calibration piece, wherein the main crosstalk error term and the secondary crosstalk error term are used for calibrating the vector network analyzer.
    Type: Grant
    Filed: September 19, 2020
    Date of Patent: March 15, 2022
    Assignee: The 13th Research Institute of China Electronics Technology Group Corporation
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Xuefeng Zou, Zhifu Hu, Jian Cao, Ye Huo
  • Publication number: 20220003811
    Abstract: The present application is applicable to the technical field of terahertz on-wafer measurement, and provides a new on-wafer S-parameter calibration method and device. The method includes: performing two-port calibration on a waveguide end face when a probe is not connected to a test system; performing one-port calibration on each of two probe end faces when the probe is connected to the test system; and fabricating a crosstalk calibration standard equal to a device under test in length on a substrate of the device under test, and correct a crosstalk error of the test system according to the crosstalk calibration standard. The present application can realize accurate characterization and correction of crosstalk error in a high-frequency on-wafer S-parameter calibration process, and improve the accuracy of error correction in high-frequency on-wafer S-parameter measurement.
    Type: Application
    Filed: December 29, 2018
    Publication date: January 6, 2022
    Inventors: Aihua WU, Chong LI, Chen LIU, Yibang WANG, Xingchang FU, Faguo LIANG, Xiuwei TIAN, Yanan LIU, Jian CAO
  • Publication number: 20210181102
    Abstract: A calibration method includes: acquiring eight error models obtained after a preliminary calibration of a Terahertz frequency band system; based on the eight error models, determining a first mathematical model according to a first S parameter related to a first calibration piece, the first mathematical model comprising parallel crosstalk terms between probes, and determining a second mathematical model according to a second S parameter related to a second calibration piece, the second mathematical model comprising series crosstalk terms between the probes; determining a third mathematical model according to a third S parameter related to a measured piece; and solving and obtaining a Z parameter of the measured piece based on the first mathematical model, the second mathematical model and the third mathematical model, and acquiring an S parameter of the measured piece according to the Z parameter of the measured piece.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 17, 2021
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Peng Luan, Ye Huo, Jing Sun, Yanli Li
  • Publication number: 20210003622
    Abstract: The disclosure provides a calibration method, a system and a device of an on-wafer S parameter of a vector network analyzer. The method comprises the steps of: acquiring a first parameter of a first crosstalk calibration piece measured by the vector network analyzer; obtaining a main crosstalk error term based on the first parameter of the first crosstalk calibration piece and a calibration parameter of the first crosstalk calibration piece; acquiring a second parameter of a second crosstalk calibration piece measured by the vector network analyzer based on the main crosstalk error term; and obtaining a secondary crosstalk error term based on the second parameter of the second crosstalk calibration piece and a calibration parameter of the second crosstalk calibration piece, wherein the main crosstalk error term and the secondary crosstalk error term are used for calibrating the vector network analyzer.
    Type: Application
    Filed: September 19, 2020
    Publication date: January 7, 2021
    Inventors: Yibang Wang, Aihua Wu, Faguo Liang, Chen Liu, Xuefeng Zou, Zhifu Hu, Jian Cao, Ye Huo