Patents by Inventor Yibei GU

Yibei GU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11659938
    Abstract: The present disclosure provides for a coated flexible open-cell polyurethane foam structure. The coated flexible open-cell polyurethane foam structure includes a flexible open-cell polyurethane foam having a first major surface and a second major surface opposite the first major surface. The coated flexible open-cell polyurethane foam structure further includes a flexible heat conductive material covering 30 to 90 percent (cov., expressed in %) of a surface area of the first major surface of the flexible open-cell polyurethane foam in a predefined shape to provide one or more gaps exposing the flexible open-cell polyurethane foam between defined edges of the flexible heat conductive material, where each gap of the one or more gaps has a gap width according to Formula I: gap width (mm)??0.196×cov. (%)+20.6 (Formula I) where a total surface area of the one or more gaps provides 70 to 10 percent of the surface area of the first major surface of the flexible open-cell polyurethane foam.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: May 30, 2023
    Assignee: Dow Global Technologies, LLC
    Inventors: Kaoru Aou, Wenbo Xu, Yibei Gu, Douglas A. Brune, Laura J. Dietsche, Marc S. Black
  • Patent number: 11571667
    Abstract: A mesoporous isoporous asymmetric material includes at least one diblock or multiblock copolymer, wherein the material has a transition layer having a thickness of at least 300 nm and a low macrovoid density, and the material has a sub-structure adjacent to said transition layer and said sub-structure comprises a high macrovoid density. A method for producing mesoporous isoporous asymmetric materials having macrovoids can include: dissolving at least one diblock or multiblock copolymer in a solution, the solution having one or more solvents and one or more nonsolvents, to form a polymer solution; dispensing the polymer solution onto a substrate or mold, or through a die or template; removing at least a portion of solvent and/or nonsolvent from the polymer solution to form a concentrated polymer solution; and exposing the concentrated polymer solution to a nonsolvent causing precipitation of at least a portion of the polymer from the concentrated polymer solution.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: February 7, 2023
    Assignee: TeraPore Technologies, Inc.
    Inventors: Rachel M. Dorin, Yibei Gu, Jayraj K. Shethji, Spencer Robbins
  • Patent number: 11472910
    Abstract: A polyisocyanate component, a polyurethane foaming system, and an article made therefrom, wherein the polyisocyanate component includes (a) a preformed mixture including an aromatic oxazolidone compound that is the reaction product of at least one aromatic epoxide and at least one first polyisocyanate having an average isocyanate functionality of no more than 2.7 and greater than 1.8, in the presence of at least one catalyst, the aromatic oxazolidone compound includes at least one free isocyanate group and at least one aromatic oxazolidone group, the aromatic oxazolidone group includes an aromatic group and an oxazolidone group, and (b) at least one second polyisocyanate has an average isocyanate functionality equal to or greater than 2.7 and less than 6.0. The second polyisocyanate is added to the preformed mixture to form the polyisocyanate component. The polyisocyanate component has a viscosity of no more than 4.0 Pa-sat 25° C.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: October 18, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Yanli Feng, Weijun Zhou, Luigi Bertucelli, Rajat Duggal, Yibei Gu, Wei Liu, Davide Micheletti
  • Publication number: 20210267382
    Abstract: The present disclosure provides for a coated flexible open-cell polyurethane foam structure. The coated flexible open-cell polyurethane foam structure includes a flexible open-cell polyurethane foam having a first major surface and a second major surface opposite the first major surface. The coated flexible open-cell polyurethane foam structure further includes a flexible heat conductive material covering 30 to 90 percent (cov., expressed in %) of a surface area of the first major surface of the flexible open-cell polyurethane foam in a predefined shape to provide one or more gaps exposing the flexible open-cell polyurethane foam between defined edges of the flexible heat conductive material, where each gap of the one or more gaps has a gap width according to Formula I: gap width (mm) ??0.196×cov. (%)+20.6 (Formula I) where a total surface area of the one or more gaps provides 70 to 10 percent of the surface area of the first major surface of the flexible open-cell polyurethane foam.
    Type: Application
    Filed: August 21, 2019
    Publication date: September 2, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kaoru Aou, Wenbo Xu, Yibei Gu, Douglas A. Brune, Laura J. Dietsche, Marc S. Black
  • Publication number: 20210206937
    Abstract: A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 8, 2021
    Inventors: Kaoru Aou, Yibei Gu, Rajat Duggal, Yasmin N. Srivastava, Joseph Jacobs, Qinghao Meng, Gregoire Cardoen, Ralph C. Even, Morgan A. Springs
  • Publication number: 20210061939
    Abstract: A polyisocyanate component, a polyurethane foaming system, and an article made therefrom, wherein the polyisocyanate component includes (a) a preformed mixture including an aromatic oxazolidone compound that is the reaction product of at least one aromatic epoxide and at least one first polyisocyanate having an average isocyanate functionality of no more than 2.7 and greater than 1.8, in the presence of at least one catalyst, the aromatic oxazolidone compound includes at least one free isocyanate group and at least one aromatic oxazolidone group, the aromatic oxazolidone group includes an aromatic group and an oxazolidone group, and (b) at least one second polyisocyanate has an average isocyanate functionality equal to or greater than 2.7 and less than 6.0. The second polyisocyanate is added to the preformed mixture to form the polyisocyanate component. The polyisocyanate component has a viscosity of no more than 4.0 Pa-sat 25° C.
    Type: Application
    Filed: May 18, 2018
    Publication date: March 4, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Yanli Feng, Weijun Zhou, Luigi Bertucelli, Rajat Duggal, Yibei Gu, Wei Liu, Davide Micheletti
  • Publication number: 20210008507
    Abstract: A mesoporous isoporous asymmetric material includes at least one diblock or multiblock copolymer, wherein the material has a transition layer having a thickness of at least 300 nm and a low macrovoid density, and the material has a sub-structure adjacent to said transition layer and said sub-structure comprises a high macrovoid density. A method for producing mesoporous isoporous asymmetric materials having macrovoids can include: dissolving at least one diblock or multiblock copolymer in a solution, the solution having one or more solvents and one or more nonsolvents, to form a polymer solution; dispensing the polymer solution onto a substrate or mold, or through a die or template; removing at least a portion of solvent and/or nonsolvent from the polymer solution to form a concentrated polymer solution; and exposing the concentrated polymer solution to a nonsolvent causing precipitation of at (least a portion of the polymer from the concentrated polymer solution.
    Type: Application
    Filed: March 12, 2019
    Publication date: January 14, 2021
    Applicant: TeraPore Technologies, Inc.
    Inventors: Rachel M. Dorin, Yibei Gu, Jayraj K. Shethji
  • Publication number: 20190211171
    Abstract: A coated viscoelastic polyurethane foam includes a viscoelastic polyurethane foam having the coating thereon, the viscoelastic polyurethane foam having a resiliency of less than or equal to 20% as measured according to ASTM D3574, and a coating material on and embedded within the viscoelastic polyurethane foam, the coating material including an aqueous polymer emulsion and an encapsulated phase change material.
    Type: Application
    Filed: June 1, 2017
    Publication date: July 11, 2019
    Inventors: Kaoru Aou, Yibei Gu, Rajat Duggal, Yasmin N. Srivastava, Joseph Jacobs, Qinghao Meng, Gregoire Cardoen, Ralph C. Even, Morgan A. Springs
  • Publication number: 20160229969
    Abstract: Asymmetric organic-inorganic films and methods for forming and using such films. For example, the films are used as membranes for selective separation applications. The methods combine co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs), such as, for example, titanium dioxide (TiO2), with non-solvent induced phase separation. The resulting films exhibit structural asymmetry. For example, the films have a thin nanoporous surface layer on top of a macroporous finger-like support layer. Parameters that may dictate membrane morphology include the fraction of inorganic nanoparticles used and the length of time allowed for surface layer development. In filtration tests, the resulting membranes show both desirable selectivity and permeability. The synthesis methods for hybrid membranes provide a new self-assembly platform upon which multi-functional and high-performance organic-inorganic membranes can be formed.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 11, 2016
    Applicant: Cornell University
    Inventors: Ulrich WIESNER, Yibei GU