Patents by Inventor Yibo Yu

Yibo Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200218418
    Abstract: The present invention relates to touch sensor systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for indirect force-aware touch control. An exemplary method for receiving an adjustment gesture formed on or about a plurality of sensor panels on a plurality of faces of a device includes detecting two or more touches at a first time at the plurality of sensor panels and determining that the touches at the first time are arranged in a pattern corresponding to a predetermined gesture. The method further includes determining a relative pressure between the touches, associating the gesture with a user interface element (that accepts an adjustment input based on the relative pressure between the two or more touches) and providing an input to the user interface element based on the gesture and relative pressure between the touches.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 9, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200210026
    Abstract: The present invention relates to touch-sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for force-aware interaction with handheld display devices on one or more surfaces of the device. An exemplary embodiment includes a method for receiving a flexing gesture formed on a sensor panel of the handheld device including determining two or more pressure inputs at the sensor panel and determining a relative pressure between the two or more pressure inputs. The method further includes correlating the relative pressure inputs to the flexing gesture, associating the flexing gesture with a UI element and providing an input to the UI element based on the gesture and the relative pressure between the two or more pressure inputs.
    Type: Application
    Filed: December 23, 2019
    Publication date: July 2, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200209362
    Abstract: Method and system for performing ranging operation are provided. In one example, a transmitter is configured to transmit a first signal having a first signal level and a second signal having a second signal level, the second signal being transmitted after the first signal, the first signal and the second signal being separated by a time gap configured based on a minimum distance of a range of distances to be measured by the LiDAR module. The first signal level and the second signal level are configured based on the range of distances to be measured by the LiDAR module, a range of levels of reflectivity of a target object to be detected by the LiDAR module, and a dynamic range of a receiver circuit to receive the first signal and the second signal. Ranging operation can be performed based on the time-of-flight of at least one of the first signal or the second signal.
    Type: Application
    Filed: December 26, 2018
    Publication date: July 2, 2020
    Inventors: Vipul Chawla, Yue Lu, Yibo Yu
  • Publication number: 20200203923
    Abstract: A system for controlling a pulsed laser diode includes a power source configured to supply power to the pulsed laser diode and at least one driving branch between the power source and the pulsed laser diode. The at least one driving branch is configured to control power delivery from the power source to the pulsed laser diode. The at least one driving branch is connected to a cathode of the pulsed laser diode.
    Type: Application
    Filed: April 6, 2019
    Publication date: June 25, 2020
    Applicant: DiDi Research America, LLC
    Inventors: Yibo Yu, Yue Lu, Vipul Chawla, Zhenghan Zhu, Lingkai Kong
  • Publication number: 20200205250
    Abstract: Embodiments of the disclosure provide control systems and methods for controlling a pulsed laser diode and a sensing device including a pulsed laser diode. An exemplary control system includes a distance detector configured to generate a distance signal indicating a distance between the pulsed laser diode and an object reflecting pulsed laser beams emitted by the pulsed laser diode. The control system may also include a controller configured to dynamically control power supplied to the pulse laser diode based on the distance signal.
    Type: Application
    Filed: December 24, 2018
    Publication date: June 25, 2020
    Applicant: DiDi Research America, LLC
    Inventors: Yue Lu, Yibo Yu, Yang Yang, Lingkai Kong, Youmin Wang, Zuow-Zun Chen
  • Publication number: 20200089400
    Abstract: The present invention relates to touch sensor detectors incorporating interpolated variable impedance touch sensor arrays and specifically to detectors for non-planar touch controls. Variable impedance touch sensor arrays are applied to the surface of objects, inside objects, or other objects such that touches are detected directly or indirectly from the non-planar touch controls. An exemplary system includes a plurality of sensor panels on a plurality of device and a processor communicatively coupled to the sensor panels. The sensor panels include a plurality of physical VIA columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The processor detects touches at a first time at the sensor panels, determines that the two or more touches at the first time are arranged in a pattern corresponding to a predetermined gesture, and determines a relative pressure between the two or more touches.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200089367
    Abstract: The present invention relates to interpolated variable impedance touch sensor arrays for force-aware large-surface device interaction. An exemplary system for detecting a continuous pressure curve includes a plurality of physical variable impedance array (VIA) columns connected by interlinked impedance columns and a plurality of physical VIA rows connected by interlinked impedance rows. The system also includes a plurality of column drive sources connected to the interlinked impedance columns and to the plurality of physical VIA columns through the interlinked impedance columns as well as a plurality of row sense sinks connected to the interlinked impedance rows and to the plurality of physical VIA rows through the interlinked impedance rows. Further, the system includes a processor configured to interpolate the continuous pressure curve in the physical VIA columns and physical VIA rows from an electrical signal from the plurality of column drive sources sensed at the plurality of row sense sinks.
    Type: Application
    Filed: July 23, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20200089383
    Abstract: The present invention relates to touch sensor detector systems and methods incorporating an interpolated variable impedance touch sensor array and specifically to such systems and methods for gesture recognition and associating a UI element with the recognized gesture. In one embodiment, the present invention provides a variable impedance array (VIA) system for receiving a gesture that includes: a plurality of physical VIA columns connected by interlinked impedance columns; a plurality of physical VIA rows connected by interlinked impedance rows; and a processor configured to interpolate a location and/or pressure of the gesture in the physical columns and rows from an electrical signal from a plurality of column drive sources (connected to the plurality of physical VIA columns through the interlinked impedance columns) sensed at a plurality of row sense sinks (connected to the plurality of physical VIA rows through the interlinked impedance rows).
    Type: Application
    Filed: April 15, 2019
    Publication date: March 19, 2020
    Inventors: John Aaron Zarraga, Alexander Meagher Grau, Bethany Noel Haniger, Bradley James Bozarth, Brogan Carl Miller, Ilya Daniel Rosenberg, James Frank Thomas, Mark Joshua Rosenberg, Peter Hans Nyboer, Reuben Eric Martinez, Scott Gregory Isaacson, Stephanie Jeanne Oberg, Timothy James Miller, Tomer Moscovich, Yibo Yu
  • Publication number: 20180045550
    Abstract: A system for capacitive liquid level measurement of liquid in a container, including a level sensor with level+ and level? electrodes, driven out-of-phase to project a sensing electric field into the container, and a reference sensor with ref+ and ref? electrodes, driven out-of-phase to project a sensing electric field into the container. Sensor electronics drives the level sensor electrodes level+/? and the reference sensor electrodes ref+/? out of phase to project respective level and reference capacitance sensing fields into the container, and acquires respective level and reference capacitance measurements from the level and reference sensors. The level and reference capacitance measurement are converted into data representative of liquid level in the container. The level and reference capacitance measurements can be differentially converted according to: Liquid Level=(hL?hR) [MEAS1/MEAS1(hL)]+hR, where MEAS1=Cin1?Cin2.
    Type: Application
    Filed: July 21, 2017
    Publication date: February 15, 2018
    Inventors: Luke LaPointe, Yibo Yu