Patents by Inventor Yiding Lin

Yiding Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240222542
    Abstract: A photodetector apparatus (100), being configured for detecting light in the visible or infrared spectrum, comprises a substrate (30), a waveguide (20), a detector section (10), a first contact section (50) and a second contact section (52). The substrate (30) has a substrate surface (32) and a cladding layer (40). The waveguide (20) is arranged above the substrate surface (32) in the cladding layer (40) and is adapted for guiding light. The detector section (10) comprises a p-doped region (12, 14) and an ndoped region (16, 18), and the detector section (10?) is arranged for producing charge carriers by the (10) light guided in the waveguide (20). The first contact section (50) is connected to the p-doped region (12, 14) and the second contact section (52) is connected to the n-doped region (16, 18), the first and second contact sections (50, 52) being connectable to a measuring device for measuring an electrical signal based on the charge carriers produced by the light.
    Type: Application
    Filed: May 9, 2022
    Publication date: July 4, 2024
    Inventors: Yiding LIN, Zheng YONG, Jason MAK, Wesley SACHER, Joyce POON
  • Patent number: 11581451
    Abstract: Disclosed is a method of facilitating straining of a semiconductor element (331) for semiconductor fabrication. In a described embodiment, the method comprises: providing a base layer (320) with the semiconductor element (331) arranged on a first base portion (321) of the base layer (320), the semiconductor element (331) being subjected to a strain relating to a characteristic of the first base portion (321); and adjusting the characteristic of the first base portion (321) to facilitate straining of the semiconductor element (331).
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: February 14, 2023
    Assignees: NANYANG TECHNOLOGICAL UNIVERSITY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yiding Lin, Jurgen Michel, Chuan Seng Tan
  • Patent number: 10962810
    Abstract: An integrated optical modulator array useful for modulating light at different wavelengths in the same optical band includes multiple GeSi waveguides on a substrate. Each GeSi waveguide has a different width and is coupled to electrodes to form an electro-absorption modulator. A stressor material, such as SiN, disposed between the GeSi waveguides in the optical modulators applies a strain to the GeSi waveguides. Because each GeSi waveguide has a different width, it experiences a different strain. This difference can be a difference in magnitude, type (homogeneous v. inhomogeneous, compressive v. tensile), or both. The different strains shift the bandgaps of the Ge in the GeSi waveguides by different amounts, shifting the optical absorption edges for the GeSi waveguides by different amounts. Put differently, the stressor layer strains each GeSi modulator differently, causing each GeSi modulator to operate at a different wavelength.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 30, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Danhao Ma, Yiding Lin, Jurgen Michel
  • Publication number: 20200105962
    Abstract: Disclosed is a method of facilitating straining of a semiconductor element (331) for semiconductor fabrication. In a described embodiment, the method comprises: providing a base layer (320) with the semiconductor element (331) arranged on a first base portion (321) of the base layer (320), the semiconductor element (331) being subjected to a strain relating to a characteristic of the first base portion (321); and adjusting the characteristic of the first base portion (321) to facilitate straining of the semiconductor element (331).
    Type: Application
    Filed: June 8, 2018
    Publication date: April 2, 2020
    Inventors: Yiding LIN, Jurgen MICHEL, Chuan Seng TAN
  • Publication number: 20200103680
    Abstract: An integrated optical modulator array useful for modulating light at different wavelengths in the same optical band includes multiple GeSi waveguides on a substrate. Each GeSi waveguide has a different width and is coupled to electrodes to form an electro-absorption modulator. A stressor material, such as SiN, disposed between the GeSi waveguides in the optical modulators applies a strain to the GeSi waveguides. Because each GeSi waveguide has a different width, it experiences a different strain. This difference can be a difference in magnitude, type (homogeneous v. inhomogeneous, compressive v. tensile), or both. The different strains shift the bandgaps of the Ge in the GeSi waveguides by different amounts, shifting the optical absorption edges for the GeSi waveguides by different amounts. Put differently, the stressor layer strains each GeSi modulator differently, causing each GeSi modulator to operate at a different wavelength.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 2, 2020
    Inventors: Danhao Ma, Yiding Lin, Jurgen Michel
  • Patent number: 10418273
    Abstract: A method of manufacturing a germanium-on-insulator substrate is disclosed, comprising: (i) doping a first portion of a germanium layer with a first dopant to form a first electrode, the germanium layer arranged with a first semiconductor substrate; (ii) forming at least one layer of dielectric material adjacent to the first electrode to obtain a combined substrate; (iii) bonding a second semiconductor substrate to the layer of dielectric material and removing the first semiconductor substrate from the combined substrate to expose a second portion of the germanium layer with misfit dislocations; (iv) removing the second portion of the germanium layer to enable removal of the misfit dislocations and to expose a third portion of the germanium layer; and (v) doping the third portion of the germanium layer with a second dopant to form a second electrode. The electrodes are separated from each other by the germanium layer, and the first dopant is different to the second dopant.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: September 17, 2019
    Assignees: Nanyang Technological University, Massachusetts Institute of Technology
    Inventors: Kwang Hong Lee, Chuan Seng Tan, Eugene A. Fitzgerald, Shuyu Bao, Yiding Lin, Jurgen Michel
  • Publication number: 20190074214
    Abstract: A method of manufacturing a germanium-on-insulator substrate is disclosed, comprising: (i) doping a first portion of a germanium layer with a first dopant to form a first electrode, the germanium layer arranged with a first semiconductor substrate; (ii) forming at least one layer of dielectric material adjacent to the first electrode to obtain a combined substrate; (iii) bonding a second semiconductor substrate to the layer of dielectric material and removing the first semiconductor substrate from the combined substrate to expose a second portion of the germanium layer with misfit dislocations; (iv) removing the second portion of the germanium layer to enable removal of the misfit dislocations and to expose a third portion of the germanium layer; and (v) doping the third portion of the germanium layer with a second dopant to form a second electrode. The electrodes are separated from each other by the germanium layer, and the first dopant is different to the second dopant.
    Type: Application
    Filed: October 11, 2016
    Publication date: March 7, 2019
    Applicants: Nanyang Technological University, Massachusetts Institute of Technology
    Inventors: Kwang Hong Lee, Chuan Seng Tan, Eugene A. Fitzgerald, Shuyu Bao, Yiding Lin, Jurgen Michel