Patents by Inventor Yidong ZHONG

Yidong ZHONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963605
    Abstract: The present disclosure relates to, inter alia, a green technology for crosslinking protein molecules for various uses, where the protein molecules can be contained in protein fibers such as, but not limited to, human hair, animal fibers, and mixtures thereof. In one aspect, the present disclosure relates to a crosslinking agent comprising an oxidized sugar having at least two aldehyde groups. In another aspect, the present disclosure relates to a method of crosslinking protein fibers. This method involves providing the aforementioned crosslinking agent and infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked, thereby yielding a population of crosslinked protein fibers.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: April 23, 2024
    Assignee: CORNELL UNIVERSITY
    Inventors: Anil N. Netravali, Yidong Zhong
  • Patent number: 11913164
    Abstract: The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: February 27, 2024
    Assignee: CORNELL UNIVERSITY
    Inventors: Anil N. Netravali, Yidong Zhong, Namrata V. Patil
  • Publication number: 20220364301
    Abstract: The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
    Type: Application
    Filed: May 9, 2022
    Publication date: November 17, 2022
    Applicant: CORNELL UNIVERSITY
    Inventors: Anil N. NETRAVALI, Yidong ZHONG, Namrata V. PATIL
  • Patent number: 11326303
    Abstract: The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: May 10, 2022
    Assignee: CORNELL UNIVERSITY
    Inventors: Anil N. Netravali, Yidong Zhong, Namrata V. Patil
  • Publication number: 20210289906
    Abstract: The present disclosure relates to, inter alia, a green technology for crosslinking protein molecules for various uses, where the protein molecules can be contained in protein fibers such as, but not limited to, human hair, animal fibers, and mixtures thereof. In one aspect, the present disclosure relates to a crosslinking agent comprising an oxidized sugar having at least two aldehyde groups. In another aspect, the present disclosure relates to a method of crosslinking protein fibers. This method involves providing the aforementioned crosslinking agent and infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked, thereby yielding a population of crosslinked protein fibers.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 23, 2021
    Applicant: CORNELL UNIVERSITY
    Inventors: Anil N. NETRAVALI, Yidong ZHONG
  • Patent number: 11019902
    Abstract: The present disclosure relates to, inter alia, a green technology for crosslinking protein molecules for various uses, where the protein molecules can be contained in protein fibers such as, but not limited to, human hair, animal fibers, and mixtures thereof. In one aspect, the present disclosure relates to a crosslinking agent comprising an oxidized sugar having at least two aldehyde groups. In another aspect, the present disclosure relates to a method of crosslinking protein fibers. This method involves providing the aforementioned crosslinking agent and infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked, thereby yielding a population of crosslinked protein fibers.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: June 1, 2021
    Assignee: CORNELL UNIVERSITY
    Inventors: Anil Netravali, Yidong Zhong
  • Publication number: 20180119334
    Abstract: The disclosure provides a composition comprising a modified cellulosic surface having aliphatic fatty acid molecules and amine-silica particles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a composition comprising a modified cellulosic surface including low surface energy molecules and amine functionalized nanotubes decorated with silica nanoparticles that are covalently bonded to cellulose fibers of the cellulosic surface. Also disclosed is a process for increasing hydrophobicity of a cellulosic surface. Also disclosed is a process for increasing hydrophobicity and surface roughness of a cellulosic surface,. Also disclosed are products comprising the compositions and modified cellulosic surfaces of the present invention.
    Type: Application
    Filed: December 5, 2017
    Publication date: May 3, 2018
    Applicant: CORNELL UNIVERSITY
    Inventors: Anil N. Netravali, Yidong Zhong, Namrata V. Patil
  • Publication number: 20170065049
    Abstract: The present disclosure relates to, inter alia, a green technology for crosslinking protein molecules for various uses, where the protein molecules can be contained in protein fibers such as, but not limited to, human hair, animal fibers, and mixtures thereof. In one aspect, the present disclosure relates to a crosslinking agent comprising an oxidized sugar having at least two aldehyde groups. In another aspect, the present disclosure relates to a method of crosslinking protein fibers. This method involves providing the aforementioned crosslinking agent and infiltrating a plurality of non-crosslinked protein fibers with the crosslinking agent under conditions effective to cause protein molecules contained in the non-crosslinked protein fibers to become crosslinked, thereby yielding a population of crosslinked protein fibers.
    Type: Application
    Filed: May 1, 2015
    Publication date: March 9, 2017
    Applicant: CORNELL UNIVERSITY
    Inventors: Anil NETRAVALI, Yidong ZHONG