Patents by Inventor Yie-Shein Her

Yie-Shein Her has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10562809
    Abstract: A low K value, high Q value, low firing dielectric material and method of forming a fired dielectric material. The dielectric material can be fired below 950° C. or below 1100° C., has a K value of less than about 8 at 10-30 GHz and a Q value of greater than 500 or greater than 1000 at 10-30 GHz. The dielectric material includes, before firing a solids portion including 10-95 wt % or 10-99 wt % silica powder and 5-90 wt % or 1-90 wt % glass component. The glass component includes 50-90 mole % SiO2, 5-35 mole % or 0.1-35 mole % B2O3, 0.1-10 mole % or 0.1-25 mole % Al2O3, 0.1-10 mole % K2O, 0.1-10 mole % Na2O, 0.1-20 mole % Li2O, 0.1-30 mole % F. The total amount of Li2O+Na2O+K2O is 0.1-30 mole % of the glass component. The silica powder can be amorphous or crystalline.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 18, 2020
    Assignee: Ferro Corporation
    Inventors: Cody J. Gleason, John J. Maloney, Srinivasan Sridharan, George E. Sakoske, Peter Marley, Mohammed H. Megherhi, Yie-Shein Her, Orville W. Brown, Jackie D. Davis, Thomas J. Coffey, Ellen S. Tormey, Stanley Wang, David L. Widlewski
  • Patent number: 10544332
    Abstract: A slurry composition for use in chemical-mechanical polishing sapphire substrates and includes an alkaline pH adjuster and an accelerant.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 28, 2020
    Assignee: Ferro Corporation
    Inventors: Mohammed H. Megherhi, Nathaniel D. Urban, Yie Shein Her
  • Publication number: 20190135683
    Abstract: A low K value, high Q value, low firing dielectric material and method of forming a fired dielectric material. The dielectric material can be fired below 950° C. or below 1100° C., has a K value of less than about 8 at 10-30 GHz and a Q value of greater than 500 or greater than 1000 at 10-30 GHz. The dielectric material includes, before firing a solids portion including 10-95 wt % or 10-99 wt % silica powder and 5-90 wt % or 1-90 wt % glass component. The glass component includes 50-90 mole % SiO2, 5-35 mole % or 0.1-35 mole % B2O3, 0.1-10 mole % or 0.1-25 mole % Al2O3, 0.1-10 mole % K2O, 0.1-10 mole % Na2O, 0.1-20 mole % Li2O, 0.1-30 mole % F. The total amount of Li2O+Na2O+K2O is 0.1-30 mole % of the glass component. The silica powder can be amorphous or crystalline.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventors: Cody J. Gleason, John J. Maloney, Srinivasan Sridharan, George E. Sakoske, Peter Marley, Mohammed H. Megherhi, Yie-Shein Her, Orville W. Brown, Jackie D. Davis, Thomas J. Coffey, Ellen S. Tormey, Stanley Wang, David L. Widlewski
  • Patent number: 9892853
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 13, 2018
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, Jr., George E. Sakoske
  • Publication number: 20170204293
    Abstract: A slurry composition for use in chemical-mechanical polishing sapphire substrates and includes an alkaline pH adjuster and an accelerant.
    Type: Application
    Filed: July 18, 2016
    Publication date: July 20, 2017
    Inventors: Mohammed H. MEGHERHI, Nathaniel D. URBAN, Yie Shein HER
  • Publication number: 20170110246
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Application
    Filed: June 12, 2015
    Publication date: April 20, 2017
    Inventors: Walter J. Symes, JR., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, JR., George E. Sakoske
  • Patent number: 7687401
    Abstract: The present invention provides substantially spherical composite ceria/titania particles, a method of forming the same, and chemical mechanical polishing compositions comprising such particles. The substantially spherical particles include a substantially crystalline core portion including one or more crystallites having a cubic lattice structure including Ce(1-x)Ti(x)O2, where x is <0.25, and a substantially amorphous cladding covering at least a portion of the substantially crystalline core portion, the substantially amorphous cladding including Ti(1-y)Ce(y)O2, where y is ?0.50. The method of forming the particles includes combusting an organic solvent including a cerium salt of a carboxylic acid and a titanium (IV) chelate in a combustion supporting gas and collecting agglomerates comprising two or more substantially spherical particles.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 30, 2010
    Assignees: Ferro Corporation, Nanocerox, Inc.
    Inventors: Xiangdong Feng, Yie-Shein Her, Anthony C. Sutorik, M. Sharon Paras
  • Patent number: 7666239
    Abstract: The present invention provides a method of synthesizing abrasive particles and methods of using the same in chemical mechanical polishing slurry applications. The nanosized abrasive particles according to the invention are produced by hydrothermal synthesis using an insoluble source of cerium. The crystallites of the particles include cerium ions and titanium ions.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: February 23, 2010
    Assignee: Ferro Corporation
    Inventors: Xiangdong Feng, Yie-Shein Her, Yi Yang
  • Publication number: 20070254484
    Abstract: The present invention provides substantially spherical composite ceria/titania particles, a method of forming the same, and chemical mechanical polishing compositions comprising such particles. The substantially spherical particles include a substantially crystalline core portion including one or more crystallites having a cubic lattice structure including Ce(1-x)Ti(x)O2, where x is <0.25, and a substantially amorphous cladding covering at least a portion of the substantially crystalline core portion, the substantially amorphous cladding including Ti(1-y)Ce(y)O2, where y is ?0.50. The method of forming the particles includes combusting an organic solvent including a cerium salt of a carboxylic acid and a titanium (IV) chelate in a combustion supporting gas and collecting agglomerates comprising two or more substantially spherical particles.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Xiangdong Feng, Yie-Shein Her, Anthony Sutorik, M. Paras
  • Patent number: 7101800
    Abstract: The present invention provides a chemical-mechanical polishing slurry for use in removing a barrier layer during the fabrication of a damascene structure. The slurry according to the invention includes an agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed. In the presently most preferred embodiment of the invention, the agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed is L-lysine and/or L-arginine. The present invention also provides a method of suppressing the removal rate of an underlying silicon-containing dielectric layer during the chemical-mechanical polishing of a barrier layer in a damascene structure. The method according to the invention includes polishing the barrier layer with a slurry comprising an agent that suppresses the rate at which said underlying silicon-containing dielectric layer is removed.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: September 5, 2006
    Assignee: Ferro Corporation
    Inventors: Yie-Shein Her, Ramanathan Srinivasan, Suryadevara Babu, Suresh Ramarajan
  • Patent number: 7091164
    Abstract: A new slurry for shallow trench isolation (STI) processing in the chemical mechanical planarization (CMP) in microelectronic industry comprising an aqueous medium having an abrasive; and a compound which has a carboxylic group and an electrophilic functional group. The combination of ceria and/or titania with amino acids to obtain polishing selectivity's greater than 5:1. CMP is used for removing the excess oxide and planarizing the substrate and the trench. The silicon nitride acts as a stop layer, preventing the polishing of underlying silicon substrate.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 15, 2006
    Assignees: Eastman Kodak Company, Ferro Corporation, Clarkson University
    Inventors: Ramanathan Srinivasan, Suryadevara V. Babu, William G. America, Yie-Shein Her
  • Publication number: 20060112649
    Abstract: The present invention provides a method of synthesizing abrasive particles and methods of using the same in chemical mechanical polishing slurry applications. The nanosized abrasive particles according to the invention are produced by hydrothermal synthesis using an insoluble source of cerium. The crystallites of the particles include cerium ions and titanium ions.
    Type: Application
    Filed: November 18, 2005
    Publication date: June 1, 2006
    Applicant: Ferro Corporation
    Inventors: Xiangdong Feng, Yie-Shein Her, Yi Yang
  • Publication number: 20060032836
    Abstract: The present invention provides methods of controlling the properties of abrasive particles produced via hydrothermal synthesis for use in chemical-mechanical polishing slurries. In accordance with the methods of the invention, variables such as cerium salt concentration, dopant solution concentration, hydrothermal medium pH, hydrothermal temperature and processing duration are controlled to produce particles having the desired properties and shapes. The abrasive particles formed in accordance with the method of the invention can be used to produce CMP slurries that provide substantial improvements in the polishing of STI structures and a reduction in defects.
    Type: Application
    Filed: September 7, 2005
    Publication date: February 16, 2006
    Applicant: FERRO CORPORATION
    Inventors: Xiangdong Feng, Yie-Shein Her
  • Publication number: 20050003744
    Abstract: The present invention provides a method of synthesizing nanosized abrasive particles and methods of using the same in chemical mechanical polishing slurry applications. The nanosized abrasive particles according to the invention are produced by hydrothermal synthesis. The crystallites of the particles include cerium atoms and atoms of metals other than cerium. In a preferred embodiment of the invention, the crystallites exhibit a cubic crystal lattice structure. The differences in electric potential between the cerium atoms and the atoms of metals other than cerium facilitate the polishing of films without the need for chemical oxidizers.
    Type: Application
    Filed: May 21, 2004
    Publication date: January 6, 2005
    Applicant: Ferro Corporation
    Inventors: Xiangdong Feng, Yie-Shein Her, Yun Mao
  • Patent number: 6818030
    Abstract: The present invention provides a process for producing particles suitable for use as abrasives in chemical-mechanical polishing slurries. The process according to the invention includes mixing at least one crystallization promoter such as Ti[OCH(CH3)2)]4 with at least one cerium compound and at least one solvent, and subjecting said mixture to hydrothermal treatment at a temperature of from about 60° C. to about 700° C. to produce the particles. Particles formed in accordance with the present invention exhibit a large crystallite size, and can be used to polish silicon-containing substrates to a high degree of planarity at a relatively high rate.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: November 16, 2004
    Assignee: Ferro Corporation
    Inventors: Xiangdong Feng, Yie-Shein Her
  • Publication number: 20040157454
    Abstract: The present invention provides a chemical-mechanical polishing slurry for use in removing a barrier layer during the fabrication of a damascene structure. The slurry according to the invention includes an agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed. In the presently most preferred embodiment of the invention, the agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed is L-lysine and/or L-arginine. The present invention also provides a method of suppressing the removal rate of an underlying silicon-containing dielectric layer during the chemical-mechanical polishing of a barrier layer in a damascene structure. The method according to the invention includes polishing the barrier layer with a slurry comprising an agent that suppresses the rate at which said underlying silicon-containing dielectric layer is removed.
    Type: Application
    Filed: December 30, 2003
    Publication date: August 12, 2004
    Applicant: Ferro Corporation
    Inventors: Yie-Shein Her, Ramanathan Srinivasan, Suryadevara Babu, Suresh Ramarajan
  • Publication number: 20040051077
    Abstract: A new slurry for shallow trench isolation (STI) processing in the chemical mechanical planarization (CMP) in microelectronic industry comprising an aqueous medium having an abrasive; and a compound which has a carboxylic group and an electrophilic functional group. The combination of ceria and/or titania with amino acids to obtain polishing selectivity's greater than 5:1. CMP is used for removing the excess oxide and planarizing the substrate and the trench. The silicon nitride acts as a stop layer, preventing the polishing of underlying silicon substrate.
    Type: Application
    Filed: July 11, 2003
    Publication date: March 18, 2004
    Inventors: Ramanathan Srinivasan, Suryadevara V. Babu, William G. America, Yie-Shein Her
  • Patent number: 6702954
    Abstract: The present invention provides a chemical-mechanical polishing slurry for use in removing a barrier layer during the fabrication of a damascene structure. The slurry according to the invention includes an agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed. In the presently most preferred embodiment of the invention, the agent that suppresses the rate at which an underlying silicon-containing dielectric layer is removed is L-lysine and/or L-arginine. The present invention also provides a method of suppressing the removal rate of an underlying silicon-containing dielectric layer during the chemical-mechanical polishing of a barrier layer in a damascene structure. The method according to the invention includes polishing the barrier layer with a slurry comprising an agent that suppresses the rate at which said underlying silicon-containing dielectric layer is removed.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: March 9, 2004
    Assignee: Ferro Corporation
    Inventors: Yie-Shein Her, Ramanathan Srinivasan, Suryadevara Babu, Suresh Ramarajan
  • Patent number: 6627107
    Abstract: A new slurry for shallow trench isolation (STI) processing in the chemical mechanical planarization (CMP) in microelectronic industry comprising an aqueous medium having an abrasive; and a compound which has a carboxylic group and an electrophilic functional group. The combination of ceria and/or titania with amino acids to obtain polishing selectivity's greater than 5:1. CMP is used for removing the excess oxide and planarizing the substrate and the trench. The silicon nitride acts as a stop layer, preventing the polishing of underlying silicon substrate.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: September 30, 2003
    Assignee: Eastman Kodak Company
    Inventors: Ramanathan Srinivasan, Suryadevara V. Babu, William G. America, Yie-Shein Her
  • Patent number: 6616514
    Abstract: The present invention provides a chemical mechanical polishing slurry for use in removing a first substance from a surface of an article in preference to silicon nitride by chemical mechanical polishing. The chemical mechanical polishing slurry according to the invention includes an abrasive, an aqueous medium, and an organic polyol that does not dissociate protons, said organic polyol including a compound having at least three hydroxyl groups that are not dissociable in the aqueous medium, or a polymer formed from at least one monomer having at least three hydroxyl groups that are not dissociable in the aqueous medium. In the preferred embodiment, ceria particles are used as the abrasive and the organic polyol is selected from the group consisting of mannitol, sorbitol, mannose, xylitol, sorbose, sucrose, and dextrin. The chemical mechanical polishing slurry can further optionally include acids or bases for adjusting the pH within an effective range of from about 2 to about 12.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: September 9, 2003
    Assignee: Ferro Corporation
    Inventors: Brian Edelbach, Eric Oswald, Yie-Shein Her