Patents by Inventor Yigal Leiba

Yigal Leiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110309899
    Abstract: A method for accurately guiding millimeter-waves includes the following steps: Filtering millimeter-waves by applying the millimeter-waves at a first shape aperture of a filter waveguide, resulting in filtered millimeter-waves exiting a second shape aperture of the filter waveguide. Transporting the filtered millimeter-waves over a distance of between 9 centimeters and 25 centimeters, by applying the filtered millimeter-waves to an extruded waveguide having a length of between 9 centimeters and 25, and having a cavity featuring a cross-section that is accurate to within +/?0.05 millimeters throughout the length of the extruded waveguide, resulting in transported millimeter-waves. And producing, on a reflector, an illumination pattern that is accurate to a degree that allows conforming to a first level of radiation pattern accuracy, by applying the transported millimeter-waves at a focal point of the reflector.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 22, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Ovadia Haluba
  • Publication number: 20110299256
    Abstract: Millimeter wave radio-frequency integrated circuit device comprises a housing and a millimeter wave radio frequency integrated circuit, the housing comprising a plurality of layers laminated together and two cavities defined by apertures within the layers which are positioned to correspond as the layers are laminated together. The radio frequency integrated circuit is located within the first cavity, and the second cavity serves as a radiating cavity. The RFIC is bonded to a transmission line which connects to the radiating cavity.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 8, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Elad Dayan
  • Publication number: 20110138619
    Abstract: A method for constructing millimeter-wave laminate structures using Printed Circuit Board (PCB) processes includes the following steps: Creating a first pressed laminate structure comprising at least two laminas and a cavity, the cavity is shaped as an aperture of a waveguide, and goes perpendicularly through all laminas of the laminate structure. Plating the cavity with electrically conductive plating, using a PCB plating process. Pressing the first pressed laminate structure together with at least two additional laminas comprising a probe printed on one of the at least two additional laminas, into a PCB comprising the first pressed laminate structure and the additional laminas, such that the cavity is sealed only from one end by the additional laminas and the probe, and the probe is positioned above the cavity.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Elad Dayan, Yigal Leiba, Baruch Schwarz, Amir Shmuel
  • Publication number: 20110140810
    Abstract: A system for directing electromagnetic millimeter-waves towards a waveguide using an electrically conductive formation within a Printed Circuit Board (PCB). The system includes a waveguide having an aperture and at least two laminas belonging to a PCB. A first electrically conductive surface printed on one of the laminas is located over the aperture such that the first electrically conductive surface covers at least most of the aperture. A plurality of Vertical Interconnect Access (VIA) holes, optionally filled or plated with an electrically conductive material, are electrically connecting the first electrically conductive surface to the waveguide, forming an electrically conductive cage over the aperture. Optionally, a probe printed on one of the laminas of the PCB is located inside the cage and over the aperture.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Elad Dayan, Baruch Schwarz, Amir Shmuel
  • Publication number: 20110140811
    Abstract: A system enabling interface between a millimeter-wave bare-die and a Printed Circuit Board (PCB). A cavity of depth X is formed in at least one lamina of a PCB. Three electrically conductive pads are printed on one of the laminas of the PCB, the pads optionally reach the edge of the cavity. A bare-die Integrated Circuit having a thickness of optionally X, or a heightened bare-die Integrated Circuit having a thickness of optionally X, output a millimeter-wave signal from three electrically conductive contacts arranged in a ground-signal-ground configuration on an upper side edge of the bare-die Integrated Circuit. The bare-die Integrated Circuit is placed inside the cavity, optionally such that the electrically conductive pads and the upper side edge containing the electrically conductive contacts are arranged side-by-side at substantially the same height. Three bonding wires or strips electrically connect each electrically conductive contact to one of the electrically conductive pads.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yigal Leiba, Elad Dayan, Baruch Schwarz, Amir Shmuel
  • Publication number: 20110140799
    Abstract: A system for matching impedances of a bare-die Integrated Circuit and bonding wires. A bare-die Integrated Circuit is configured to output or input, at an impedance of Z3, a millimeter-wave signal from three electrically conductive contacts. Three electrically conductive pads, printed on one of the laminas of a Printed Circuit Board (PCB) are connected to the three electrically conductive contacts via three bonding wires respectively, the bonding wires have a characteristic impedance of Z1, wherein Z1>Z3. One of the electrically conductive pads extends to form a transmission line signal trace of length L, the transmission line signal trace having a first width resulting in characteristic impedance of Z2, wherein Z2>Z3. The transmission line signal trace widens to a second width, higher than the first width, after the length of L, decreasing the characteristic impedance of the transmission line signal trace to substantially Z3 after the length L and onwards.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Yonatan Biran, Elad Dayan, Baruch Schwarz, Amir Shmuel, Yigal Leiba
  • Publication number: 20110140979
    Abstract: A system for injecting and guiding millimeter-waves through a Printed Circuit Board (PCB) including at least two laminas belonging to a PCB, an electrically conductive plating applied on the insulating walls of a cavity formed perpendicularly through the laminas, and optionally a probe located above the cavity printed on a lamina belonging to the PCB. Optionally, the cavity guides millimeter-waves injected by the probe at one side of the cavity to the other side of the cavity.
    Type: Application
    Filed: February 21, 2011
    Publication date: June 16, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Elad Dayan, Yigal Leiba, Baruch Schwarz, Amir Shmuel
  • Publication number: 20110110410
    Abstract: A method for performing rate adaptation of millimeter wave transmissions in a substantially line-of-sight OFDM outdoor system over a radio frequency (RF) channel includes the following. First a channel quality estimator indicative of a quality of an outdoor millimeter-wave RF channel is received. A sequence of parameter changes is defined to dynamically adjust transmission quality for the rate adaptation. The rate adaptation includes dynamic adaptation of bandwidth and at least one other parameter. The sequence is stored as a table of vectors, each vector comprising a combination of parameters where one of parameters is bandwidth. The parameter vectors in the table are dynamically worked through in response to the channel quality estimator.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: Siklu Communicaton Ltd.
    Inventors: Yigal Leiba, Baruch Schwarz, Izhak Kirshenbaum, Elad Dayan
  • Publication number: 20110057741
    Abstract: A low-loss interface between a mm-wave integrated circuit and a waveguide comprises a surface having a contact location for said integrated circuit and a waveguide location for fixing a waveguide thereon; a transmission line extending along said surface from said contact location to the waveguide location and extending into the waveguide location as a waveguide feed; and a connection bump on a surface of the mm-wave integrated circuit. The mm-wave integrated circuit RFIC is connected to the surface at the contact location through the connection bump, such as to connect a signal output of the RFIC to the transmission line, thereby providing said low loss interface.
    Type: Application
    Filed: September 8, 2009
    Publication date: March 10, 2011
    Applicant: Siklu Communication Ltd.
    Inventors: Elad DAYAN, Amir Shmuel, Yigal Leiba, Baruch Schwarz
  • Publication number: 20100302101
    Abstract: A method of automatic alignment of two directional beams having a known path attenuation, and an antenna gain pattern, for mutual transmission, comprises: determining a beam width between two angles of minimal detectable connection on either side of a beam maximum; then mapping points onto a scan field in a regular pattern, the pattern based on the beam width, such that a beam with the determined beam width is detected once if the beam is in the scan field at all; scanning the first antenna over the mapped scan points; and for each point allowing the second antenna to scan over all of its own set of mapped scan points, thereby providing a coarse alignment of the two antennas to achieve at least a minimal mutual connection. The coarse alignment may be followed by a fine alignment to maximize the signal.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Applicant: Siklu Communication ltd.
    Inventors: Yigal LEIBA, Baruch SCHWARZ, Elad DAYAN, Izhak KIRSHENBAUM