Patents by Inventor Yijun DING

Yijun DING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894508
    Abstract: A second-generation high temperature superconducting (HTS) strip and a preparation method thereof are provided. The second-generation HTS strip includes a superconducting strip body and a stabilizing layer arranged thereon. The stabilizing layer is a copper-graphene composite film with a total thickness of 2-30 microns on one side. The superconducting strip may be obtained by the preparation method of: (1) putting a superconducting strip body into a magnetron sputtering reaction chamber, followed by pumping to a high-level vacuum and filling with a working gas; (2) using copper and graphene as targets, and performing a sputter coating by controlling a magnetron sputtering power, to deposit the targets onto at least one surface of the superconducting strip body.
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: February 6, 2024
    Assignees: Shanghai Superconductor Technology Co., Ltd., Shanghai Jiao Tong University
    Inventors: Yue Zhao, Donghong Wu, Guangyu Jiang, Chunsheng Cheng, Jiamin Zhu, Wei Wu, Yijun Ding, Zhijian Jin
  • Publication number: 20220359810
    Abstract: A second-generation high temperature superconducting (HTS) strip and a preparation method thereof are provided. The second-generation HTS strip includes a superconducting strip body and a stabilizing layer arranged thereon. The stabilizing layer is a copper-graphene composite film with a total thickness of 2-30 microns on one side. The superconducting strip may be obtained by the preparation method of: (1) putting a superconducting strip body into a magnetron sputtering reaction chamber, followed by pumping to a high-level vacuum and filling with a working gas; (2) using copper and graphene as targets, and performing a sputter coating by controlling a magnetron sputtering power, to deposit the targets onto at least one surface of the superconducting strip body.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 10, 2022
    Inventors: YUE ZHAO, DONGHONG WU, GUANGYU JIANG, CHUNSHENG CHENG, JIAMIN ZHU, WEI WU, YIJUN DING, ZHIJIAN JIN
  • Publication number: 20220187181
    Abstract: The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
    Type: Application
    Filed: October 20, 2021
    Publication date: June 16, 2022
    Applicants: Arizona Board of Regents on Behalf of the University of Arizona, inviCro, LLC
    Inventors: Harrison H. BARRETT, Yijun DING, Luca CAUCCI, John William HOPPIN
  • Publication number: 20220123193
    Abstract: The invention relates to a (RE,Y)-123 superconducting film containing mixed artificial pinning centers and a preparation method thereof, wherein a stoichiometric ratio of Cu in a parent phase of the (RE,Y)-123 superconducting film is 3.05-5; the mixed artificial pinning centers include a perovskite structure BaMO3 and a double-perovskite structure oxide Ba2(RE,Y)NO6; and a total mole percentage of Ba2(RE,Y)NO6 in the superconducting film is not less than 2.5%. The mixed artificial pinning centers form well-aligned column structures along the thickness direction in the superconducting film.
    Type: Application
    Filed: November 17, 2020
    Publication date: April 21, 2022
    Inventors: Yue ZHAO, Yue WU, Guangyu JIANG, Jiamin ZHU, Donghong WU, Yu CHEN, Yijun DING
  • Patent number: 11249000
    Abstract: The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 15, 2022
    Assignees: Arizona Board of Regents on Behalt of the University of Arizona, inviCro, LLC
    Inventors: Harrison H. Barrett, Yijun Ding, Luca Caucci, John William Hoppin
  • Publication number: 20200049607
    Abstract: The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 13, 2020
    Applicants: Arizona Board of Regents on Behalf of the University of Arizona, inviCro, LLC
    Inventors: Harrison H. BARRETT, Yijun DING, Luca CAUCCI, John William HOPPIN
  • Patent number: 10444136
    Abstract: The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 15, 2019
    Assignees: Arizona Board of Regents on Behalf of the University of Arizona, InviCro, LLC
    Inventors: Harrison H. Barrett, Yijun Ding, Luca Caucci, John William Hoppin
  • Patent number: 9977136
    Abstract: The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: May 22, 2018
    Assignees: The Arizona Board of Regents on Behalf of The University of Arizona, inviCRO, LLC
    Inventors: Harrison H. Barrett, Brian Miller, Yijun Ding, Liying Chen, John William Hoppin, Luca Caucci
  • Publication number: 20180052242
    Abstract: The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 22, 2018
    Applicants: Arizona Board of Regents on Behalf of The University of Arizona, inviCRO, LLC
    Inventors: Harrison H. BARRETT, Brian MILLER, Yijun DING, Liying CHEN, John William HOPPIN, Luca CAUCCI
  • Publication number: 20170343460
    Abstract: The present invention provides autoradiography methods and systems for imaging via the detection of alpha particles, beta particles, or other charged particles. Embodiments of the methods and systems provide high-resolution 3D imaging of the distribution of a radioactive probe, such as a radiopharmaceutical, on a tissue sample. Embodiments of the present methods and systems provide imaging of tissue samples by reconstruction of a 3D distribution of a source of particles, such as a radiopharmaceutical. Embodiments of the methods and systems provide tomographic methods including microtomography, macrotomography, cryomicrotomography and cryomacrotomography.
    Type: Application
    Filed: November 11, 2015
    Publication date: November 30, 2017
    Applicants: Arizona Board of Regents on Behalf of the University of Arizona, inviCro, LLC
    Inventors: Harrison H. BARRETT, Yijun DING, Luca CAUCCI, John William HOPPIN
  • Patent number: 9823364
    Abstract: The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 21, 2017
    Assignees: Arizona Board of Regents on Behalf of the University of Arizona, Invicro, LLC
    Inventors: Harrison H. Barrett, Brian Miller, Yijun Ding, Liying Chen, John William Hoppin, Luca Caucci
  • Publication number: 20170010369
    Abstract: The present invention provides methods and systems for 3D imaging of in vivo and ex vivo tissues. The disclosed systems and methods employ an autoradiographic approach where particles emitted by a radioactive composition within the tissue are detected. Once detected, a 3D representation of the source of particles within the tissue is reconstructed for viewing and analysis.
    Type: Application
    Filed: February 3, 2015
    Publication date: January 12, 2017
    Applicants: The Arizona Board of Regents on Behalf of The Univ ersity of Arizona, inviCRO, LLC
    Inventors: Harrison H. BARRETT, Brian MILLER, Yijun DING, Liying CHEN, John William HOPPIN, Luca CAUCCI